23 research outputs found

    Recent Change—North Sea

    Get PDF
    This chapter discusses past and ongoing change in the following physical variables within the North Sea: temperature, salinity and stratification; currents and circulation; mean sea level; and extreme sea levels. Also considered are carbon dioxide; pH and nutrients; oxygen; suspended particulate matter and turbidity; coastal erosion, sedimentation and morphology; and sea ice. The distinctive character of the Wadden Sea is addressed, with a particular focus on nutrients and sediments. This chapter covers the past 200 years and focuses on the historical development of evidence (measurements, process understanding and models), the form, duration and accuracy of the evidence available, and what the evidence shows in terms of the state and trends in the respective variables. Much work has focused on detecting long-term change in the North Sea region, either from measurements or with models. Attempts to attribute such changes to, for example, anthropogenic forcing are still missing for the North Sea. Studies are urgently needed to assess consistency between observed changes and current expectations, in order to increase the level of confidence in projections of expected future conditions

    Effects of Nutrient Management Scenarios on Marine Eutrophication Indicators: A Pan-European, Multi-Model Assessment in Support of the Marine Strategy Framework Directive

    Get PDF
    A novel pan-European marine model ensemble was established, covering nearly all seas under the regulation of the Marine Strategy Framework Directive (MSFD), with the aim of providing a consistent assessment of the potential impacts of riverine nutrient reduction scenarios on marine eutrophication indicators. For each sea region, up to ïŹve coupled biogeochemical models from institutes all over Europe were brought together for the ïŹrst time. All model systems followed a harmonised scenario approach and ran two simulations, which varied only in the riverine nutrient inputs. The load reductions were evaluated with the catchment model GREEN and represented the impacts due to improved management of agriculture and wastewater treatment in all European river systems. The model ensemble, comprising 15 members, was used to assess changes to the core eutrophication indicators as deïŹned within MSFD Descriptor 5. In nearly all marine regions, riverine load reductions led to reduced nutrient concentrations in the marine environment. However, regionally the nutrient input reductions led to an increase in the non-limiting nutrient in the water, especially in the case of phosphate concentrations in the Black Sea. Further core eutrophication indicators, such as chlorophyll-a, bottom oxygen and the Trophic Index TRIX, improved nearly everywhere, but the changes were less pronounced than for the inorganic nutrients. The model ensemble displayed strong consistency and robustness, as most if not all models indicated improvements in the same areas. There were substantial differences between the individual seas in the speed of response to the reduced nutrient loads. In the North Sea ensemble, a stable plateau was reached after only three years, while the simulation period of eight years was too short to obtain steady model results in the Baltic Sea. The ensemble exercise conïŹrmed the importance of improved management of agriculture and wastewater treatments in the river catchments to reduce marine eutrophication. Several shortcomings were identiïŹed, the outcome of different approaches to compute the mean change was estimated and potential improvements are discussed to enhance policy support. Applying a model ensemble enabled us to obtain highly robust and consistent model results, substantially decreasing uncertainties in the scenario outcom

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board

    Seasonal variations in the Amazon plume-related atmospheric carbon sink

    Get PDF
    The Amazon River plume is a highly seasonal feature that can reach more than 3000 km across the tropical Atlantic Ocean, and cover ∌2 million kmÂČ. Ship observations show that its seasonal presence significantly reduces sea surface salinity and inorganic carbon. In the western tropical North Atlantic during April–May 2003, plume-influenced stations exhibited surface DIC concentrations lowered by as much as 563 ÎŒmol C kg⁻Âč (∌28%) and pCO₂ as low as 201 ÎŒatm. We combine our data with other data sets to understand the annual uptake and seasonal variability of the plume-related CO₂ sink. Using flux estimates from all seasons with monthly plume areas determined by satellite, we calculate the annual carbon uptake by the outer plume alone (28 < S < 35) to be 15 ± 6 TgC yr⁻Âč. Diazotroph-supported net community production enhanced the air-sea CO₂ disequilibrium by 100x and reversed the typical CO₂ outgassing from the tropical North Atlantic. The carbon sink in the Amazon plume depends on climate-sensitive conditions that control river hydrology, CO₂ solubility, and gas exchange

    Die Löslichkeit von Bariumhydroxyd in Natronlauge

    No full text

    On the temporal increase of anthropogenic CO2 in the subpolar North Atlantic

    No full text
    The subpolar North Atlantic (NA) plays a key role in the oceanic uptake of anthropogenic CO2. The availability of a historical high quality data set from the Transient Tracers in the Ocean North Atlantic Study (TTO-NAS) in 1981, together with data from recent studies in 1997 and 1999, makes it possible to assess the temporal increase of anthropogenic CO2 (View the MathML sourceCTant) in the region. We introduce an extension of a previous published empirical approach for estimating temporal increases of View the MathML sourceCTant, which is known as multiple linear regression approach (MLR). The method is based on a multiple linear-regression model employing hydrographic and chemical parameters. The accuracy of the extended MLR calculation (eMLR) proposed here is estimated to be ±3 ÎŒmol/kg for a parameterization based on potential temperature, total alkalinity, silicate, and phosphate. Calculated increases of View the MathML sourceCTant (View the MathML sourceΔCTant(PO4)) for the time period 1981–1997 are 1–20 ÎŒmol/kg at depths greater than 100 m. The distribution corresponds well to silicate and CFC-12 distributions. Open ocean profiles show a relative minimum between 300 and 1000 m, which is not apparent in profiles of the total View the MathML sourceCTant concentration. The View the MathML sourceΔCTant(PO4) inventory calculation for the northern NA region (40–65°N) yields a change in anthropogenic CO2 storage of 4.2 (±1) pg C over the 16-yr time period 1981–1997. This is equivalent to a mean annual View the MathML sourceCTant increase of 0.27 (±0.06) pg C/yr or more than 10% of the global ocean uptake for this period

    The North Sea — A shelf sea in the Anthropocene.

    No full text
    Global and regional change clearly affects the structure and functioning of ecosystems in shelf seas. However, complex interactions within the shelf seas hinder the identification and unambiguous attribution of observed changes to drivers. These include variability in the climate system, in ocean dynamics, in biogeochemistry, and in shelf sea resource exploitation in the widest sense by societies. Observational time series are commonly too short, and resolution, integration time, and complexity of models are often insufficient to unravel natural variability from anthropogenic perturbation. The North Sea is a shelf sea of the North Atlantic and is impacted by virtually all global and regional developments. Natural variability (from interannual to multidecadal time scales) as response to forcing in the North Atlantic is overlain by global trends (sea level, temperature, acidification) and alternating phases of direct human impacts and attempts to remedy those. Human intervention started some 1000 years ago (diking and associated loss of wetlands), expanded to near-coastal parts in the industrial revolution of the mid-19th century (river management, waste disposal in rivers), and greatly accelerated in the mid-1950s (eutrophication, pollution, fisheries). The North Sea is now a heavily regulated shelf sea, yet societal goals (good environmental status versus increased uses), demands for benefits and policies diverge increasingly. Likely, the southern North Sea will be re-zoned as riparian countries dedicate increasing sea space for offshore wind energy generation with uncertain consequences for the system's environmental status. We review available observational and model data (predominantly from the southeastern North Sea region) to identify and describe effects of natural variability, of secular changes, and of human impacts on the North Sea ecosystem, and outline developments in the next decades in response to environmental legislation, and in response to increased use of shelf sea space
    corecore