34 research outputs found

    Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion.

    Get PDF
    yesPhotobiomodulation is reported to positively influence hair regrowth, wound healing, skin rejuvenation, and psoriasis. Despite rapid translation of this science to commercial therapeutic solutions, significant gaps in our understanding of the underlying processes remain. The aim of this review was to seek greater clarity and rationality specifically for the selection of optical parameters for studies on hair regrowth and wound healing. Our investigation of 90 reports published between 1985-2015 revealed major inconsistencies in optical parameters selected for clinical applications. Moreover, poorly understood photoreceptors expressed in skin such as cytochrome c oxidase, cryptochromes, opsins, may trigger different molecular mechanisms. All this could explain the plethora of reported physiological effects of light. To derive parameters for optimal clinical efficacy of photobiomodulation, we recommend a more rational approach, underpinning clinical studies with research of molecular targets and pathways using well-defined biological model systems enabling easy translation of optical parameters from in vitro to in vivo. Furthermore, special attention needs to be paid when conducting studies for hair regrowth, aiming for double-blind, placebo-controlled randomized clinical trials as the gold standard for quantifying hair growth.European Marie-Curie Actions Programme, Grant agreement no.: 60788

    A new path in defining light parameters for hair growth: discovery and modulation of photoreceptors in human hair follicle

    Get PDF
    YesBackground and Objective: Though devices for hair growth based on low levels of light have shown encouraging results, further improvements of their efficacy is impeded by a lack of knowledge on the exact molecular targets that mediate physiological response in skin and hair follicle. The aim of this study was to investigate the expression of selected light-sensitive receptors in the human hair follicle and to study the impact of UV-free blue light on hair growth ex vivo. Material and Methods: The expression of Opsin receptors in human skin and hair follicles has been characterised using RT-qPCR and immunofluorescence approaches. The functional significance of Opsin 3 was assessed by silencing its expression in the hair follicle cells followed by a transcriptomic profiling. Proprietary LED-based devices emitting two discrete visible wavelengths were used to access the effects of selected optical parameters on hair growth ex vivo and outer root sheath cells in vitro. Results: The expression of OPN2 (Rhodopsin) and OPN3 (Panopsin, Encephalopsin) was detected in the distinct compartments of skin and anagen hair follicle. Treatment with 3.2 J/cm2 of blue light with 453 nm central wavelength significantly prolonged anagen phase in hair follicles ex vivo that was correlated with sustained proliferation in the light-treated samples. In contrast, hair follicle treatment with 3.2 J/cm2 of 689 nm light (red light) did not significantly affect hair growth ex vivo. Silencing of OPN3 in the hair follicle outer root sheath cells resulted in the altered expression of genes involved in the control of proliferation and apoptosis, and abrogated stimulatory effects of blue light (3.2 J/cm2; 453 nm) on proliferation in the outer root sheath cells. Conclusions: We provide the first evidence that 1) OPN2 and OPN3 are expressed in human hair follicle, and 2) 453 nm blue light at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3.This study was supported by the European Marie-Curie Actions Programme, Grant agreement no.: 60788

    Light emitting diode-generated blue light modulates fibrosis characteristics: Fibroblast proliferation, migration speed, and reactive oxygen species generation

    No full text
    BACKGROUND AND OBJECTIVE: Blue light is part of the visible light spectrum that does not generate harmful DNA adducts associated with skin cancer and photoaging, and may represent a safer therapeutic modality for treatment of keloid scars and other fibrotic skin diseases. Our laboratory previously demonstrated that light-emitting diode (LED) red and infrared light inhibits proliferation of skin fibroblasts. Moreover, different wavelengths of light can produce different biological effects. Furthermore, the effects of LED blue light (LED-BL) on human skin fibroblasts are not well characterized. This study investigated the effects of LED-BL on human skin fibroblast proliferation, viability, migration speed, and reactive oxygen-species (ROS) generation. METHODS AND MATERIALS: Irradiation of adult human skin fibroblasts using commercially-available LED-BL panels was performed in vitro, and modulation of proliferation and viability was quantified using the trypan blue dye exclusion assay, migratory speed was assessed using time-lapse video microscopy, and intracellular ROS generation was measured using the dihydrorhodamine flow cytometry assay. Statistical differences between groups were determined by ANOVA and Student s t-test. RESULTS: Human skin fibroblasts treated with LED-BL fluences of 5, 30, 45, and 80 J/cm(2) demonstrated statistically significant dose-dependent decreases in relative proliferation of 8.4%, 29.1%, 33.8%, 51.7%, and 55.1%, respectively, compared to temperature and environment matched bench control plates, respectively. LED-BL fluences of 5, 30, 45 and 80 J/cm(2) decreased fibroblast migration speed to 95 ± 7.0% (p = 0.64), 81.3 ± 5.5% (p = 0.021), 48.5 ± 2.7% (p < 0.0001), and 32.3 ± 1.9% (p < 0.0001), respectively, relative to matched controls. LED fluences of 5, 10, 30, and 80 J/cm(2) resulted in statistically significant increases in reactive oxygen species of 110.4%, 116.6%, 127.5%, and 130%, respectively, relative to bench controls. CONCLUSION: At the fluences studied, LED-BL can inhibit adult human skin dermal fibroblast proliferation and migration speed, and is associated with increased reactive oxygen species generation in a dose-dependent manner without altering viability. LED-BL has the potential to contribute to the treatment of keloids and other fibrotic skin diseases and is worthy of further translational and clinical investigation
    corecore