12 research outputs found

    Seasonal hydrological and suspended sediment transport dynamics in proglacial streams, James Ross Island, Antarctica

    Get PDF
    Rapid warming of the Antarctic Peninsula is producing accelerated glacier mass loss and can be expected to have significant impacts on meltwater runoff regimes and proglacial fluvial activity. This study presents analysis of the hydrology and suspended sediment dynamics of two proglacial streams on James Ross Island, Antarctic Peninsula. Mean water discharge during 8 January 2015 to 18 February 2015 reached 0.19 m3 s−1 and 0.06 m3 s−1 for Bohemian Stream and Algal Stream, respectively, equivalent to specific runoff of 76 and 60 mm month−1. The daily discharge regime strongly correlated with air and ground temperatures. The effect of global radiation on proglacial water discharge was found low to negligible. Suspended sediment concentrations of Bohemian Stream were very high (up to 2927 mg L−1) due to aeolian supply and due to the high erodibility of local rocks. Total sediment yield (186 t km−2 yr−1) was high for (nearly) deglaciated catchments, but relatively low in comparison with streams draining more glaciated alpine and arctic catchments. The sediment provenance was mostly local Cretaceous marine and aeolian sediments; volcanic rocks are not an important source for suspended load. High Rb/Sr ratios for some samples suggested chemical weathering. Overall, this monitoring of proglacial hydrological and suspended sediment dynamics contributes to the dearth of such data from Antarctic environments and offers an insight to the nature of the proglacial fluvial activity, which is likely to be in a transient state with ongoing climate change

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    Get PDF
    River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.peerReviewe

    Mortality and morbidity in adult craniopharyngioma.

    No full text
    A craniopharyngioma (CP) is an embryonic malformation of the sellar and parasellar region. The annual incidence is 0.5-2.0 cases/million/year and approximately 60 % of CP are seen in adulthood. Craniopharyngiomas have the highest mortality of all pituitary tumors. Typical initial manifestations at diagnosis in adults are visual disturbances, hypopituitarism and symptoms of elevated intracranial pressure. The long-term morbidity is substantial with hypopituitarism, increased cardiovascular risk, hypothalamic damage, visual and neurological deficits, reduced bone health, and reduction in quality of life and cognitive function. Therapy of choice is surgery, followed by cranial radiotherapy in about half of the patients. The standardised overall mortality rate varies 2.88-9.28 in cohort studies. Patients with CP have a 3-19 fold higher cardiovascular mortality in comparison to the general population. Women with CP have an even higher risk

    Global patterns and drivers of ecosystem functioning in rivers and riparian zones

    No full text
    Abstract River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth’s biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented “next-generation biomonitoring” by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale
    corecore