85 research outputs found

    High-resolution in situ observations of electron precipitation-causing EMIC waves

    Get PDF
    Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size, and energy range of EMIC-induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. These observations will better constrain modeling into the importance of EMIC wave-particle interactions

    A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: Functional characterisation and signatures of selection

    Get PDF
    Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Cx. quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in E.coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10x expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to Cx. quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised from the allele used in the reporter assay through fusion PCR, expression was unaffected, indicating that the TE has no direct role in resistance and hence that CuRE1 is acting only as a marker of an as yet unidentified regulatory motif in the association analysis. This suggests that a re-evaluation of the assumption that TEs contribute regulatory motifs involved in gene expression may be necessary

    Field-Caught Permethrin-Resistant Anopheles gambiae Overexpress CYP6P3, a P450 That Metabolises Pyrethroids

    Get PDF
    Insects exposed to pesticides undergo strong natural selection and have developed various adaptive mechanisms to survive. Resistance to pyrethroid insecticides in the malaria vector Anopheles gambiae is receiving increasing attention because it threatens the sustainability of malaria vector control programs in sub-Saharan Africa. An understanding of the molecular mechanisms conferring pyrethroid resistance gives insight into the processes of evolution of adaptive traits and facilitates the development of simple monitoring tools and novel strategies to restore the efficacy of insecticides. For this purpose, it is essential to understand which mechanisms are important in wild mosquitoes. Here, our aim was to identify enzymes that may be important in metabolic resistance to pyrethroids by measuring gene expression for over 250 genes potentially involved in metabolic resistance in phenotyped individuals from a highly resistant, wild A. gambiae population from Ghana. A cytochrome P450, CYP6P3, was significantly overexpressed in the survivors, and we show that the translated enzyme metabolises both alpha-cyano and non–alpha-cyano pyrethroids. This is the first study to demonstrate the capacity of a P450 identified in wild A. gambiae to metabolise insecticides. The findings add to the understanding of the genetic basis of insecticide resistance in wild mosquito populations

    Fundulus as the premier teleost model in environmental biology : opportunities for new insights using genomics

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2 (2007): 257-286, doi:10.1016/j.cbd.2007.09.001.A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.This material is based on work supported by grants from the National Science Foundation DBI-0420504 (LJB), OCE 0308777 (DLC, RNW, BBR), BES-0553523 (AW), IBN 0236494 (BBR), IOB-0519579 (DHE), IOB-0543860 (DWT), FSML-0533189 (SC); National Institute of Health NIEHS P42-ES007381(GVC, MEH), P42-ES10356 (RTD), ES011588 (MFO); and NCRR P20 RR-016463 (DWT); Natural Sciences and Engineering Research Council of Canada Discovery (DLM, TDS, WSM) and Collaborative Research and Development Programs (DLM); NOAA/National Sea Grant NA86RG0052 (LJB), NA16RG2273 (SIK, MEH,GVC, JJS); Environmental Protection Agency U91620701 (WSB), R82902201(SC) and EPA’s Office of Research and Development (DEN)

    Extraversion is linked to volume of the orbitofrontal cortex and amygdala

    Get PDF
    Contains fulltext : 103145.pdf (publisher's version ) (Open Access)Neuroticism and extraversion are personality factors associated with the vulnerability for developing depression and anxiety disorders, and are possibly differentially related to brain structures implicated in the processing of emotional information and the generation of mood states. To date, studies on brain morphology mainly focused on neuroticism, a dimension primarily related to negative affect, yielding conflicting findings concerning the association with personality, partially due to methodological issues and variable population samples under study. Recently, extraversion, a dimension primarily related to positive affect, has been repeatedly inversely related to with symptoms of depression and anxiety disorders. In the present study, high resolution structural T1-weighted MR images of 65 healthy adults were processed using an optimized Voxel Based Morphometry (VBM) approach. Multiple regression analyses were performed to test for associations of neuroticism and extraversion with prefrontal and subcortical volumes. Orbitofrontal and right amygdala volume were both positively related to extraversion. Extraversion was differentially related to volume of the anterior cingulate cortex in males (positive) and females (negative). Neuroticism scores did not significantly correlate with these brain regions. As extraversion is regarded a protective factor for developing anxiety disorders and depression and has been related to the generation of positive affect, the present results indicate that the reduced likelihood of developing affective disorders in individuals high on extraversion is related to modulation of emotion processing through the orbitofrontal cortex and the amygdala.6 p

    Astrocyte scar formation aids central nervous system axon regeneration

    Get PDF
    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration

    Electromagnetic ion cyclotron waves in the helium branch induced by multiple electromagnetic ion cyclotron triggered emissions

    Get PDF
    Electromagnetic ion cyclotron (EMIC) triggered emissions with rising tones between the H+ and He+ cyclotron frequencies were found in the inner magnetosphere by the recent Cluster observations. Another type of EMIC wave with a constant frequency is occasionally observed below the He+ cyclotron frequency after the multiple EMIC triggered emissions. We performed a self-consistent hybrid simulation with a one-dimensional cylindrical magnetic flux model approximating the dipole magnetic field of the Earth's inner magnetosphere. In the presence of energetic protons with a sufficient density and temperature anisotropy, multiple EMIC triggered emissions are reproduced due to the nonlinear wave growth mechanism of rising-tone chorus emissions, and a constant frequency wave in the He+ EMIC branch is subsequently generated. Through interaction with the multiple EMIC rising-tone emissions, the velocity distribution function of the energetic protons is strongly modified. Because of the pitch angle scattering of the protons, the gradient of the distribution in velocity phase space is enhanced along the diffusion curve of the He+ branch wave, resulting in the linear growth of the EMIC wave in the He+ branch

    Always a Rebel: An Interview with Kazu Iijima

    No full text
    corecore