96 research outputs found

    Conceptual knowledge for understanding other’s actions is organized primarily around action goals

    Get PDF
    Semantic knowledge about objects entails both knowing how to grasp an object (grip-related knowledge) and what to do with an object (goal-related knowledge). Considerable evidence suggests a hierarchical organization in which specific hand-grips in action execution are most often selected to accomplish a remote action goal. The present study aimed to investigate whether a comparable hierarchical organization of semantic knowledge applies to the recognition of other’s object-directed actions as well. Correctness of either the Grip (hand grip applied to the object) or the Goal (end-location at which an object was directed) were manipulated independently in two experiments. In Experiment 1, subjects were required to attend selectively to either the correctness of the grip or the goal of the observed action. Subjects were faster when attending to the goal of the action and a strong interference of goal-violations was observed when subjects attended to the grip of the action. Importantly, observation of irrelevant goal- or grip-related violations interfered with making decisions about the correctness of the relevant dimension only when the relevant dimension was correct. In contrast, in Experiment 2, when subjects attended to an action-irrelevant stimulus dimension (i.e. orientation of the object), no interference of goal- or grip-related violations was found, ruling out the possibility that interference-effects result from perceptual differences between stimuli. These findings suggest that understanding the correctness of an action selectively recruits specialized, but interacting networks, processing the correctness of goal- and grip-specific information during action observation

    Tool selection and the ventral‐dorsal organization of tool‐related knowledge

    Get PDF
    Tool selection is a cognitive process necessary for tool use, and may rely on distinct knowledge under different conditions. This fMRI experiment was designed to identify neural substrates mediating tool selection under different conditions. Participants performed a picture‐matching task that presented a recipient object and an action‐goal, and required the selection of the best tool object from among four candidates. Some trials allowed selection of the prototypical tool, whereas others forced selection of either a functionally substitutable or impossible tool. Statistical contrasts revealed significantly different activation between Proto and Sub conditions in frontal, parietal, and temporal lobes. The middle temporal gyrus (MTG) bilaterally, and the right posterior cingulate were more strongly activated by prototypical tool selection, and left inferior parietal lobule (IPL), intraparietal sulcus (IPS), middle frontal gyrus, and precuneus were more strongly activated when selecting substitutable objects. These findings are concordant with previous neuroimaging studies of tool use knowledge in demonstrating that activation of the MTG represents functional knowledge for conventional tool usage, and activation of the IPL/IPS supports action (i.e., praxic) knowledge representations. These results contribute to the literature that dissociates the roles of ventral and dorsal streams in tool‐related knowledge and behavior, and emphasize the role of the left hemisphere for processing goal‐directed object interactions

    Ipsilesional trajectory control is related to contralesional arm paralysis after left hemisphere damage

    Get PDF
    We have recently shown ipsilateral dynamic deficits in trajectory control are present in left hemisphere damaged (LHD) patients with paresis, as evidenced by impaired modulation of torque amplitude as response amplitude increases. The purpose of the current study is to determine if these ipsilateral deficits are more common with contralateral hemiparesis and greater damage to the motor system, as evidenced by structural imaging. Three groups of right-handed subjects (healthy controls, LHD stroke patients with and without upper extremity paresis) performed single-joint elbow movements of varying amplitudes with their left arm in the left hemispace. Only the paretic group demonstrated dynamic deficits characterized by decreased modulation of peak torque (reflected by peak acceleration changes) as response amplitude increased. These results could not be attributed to lesion volume or peak velocity as neither variable differed across the groups. However, the paretic group had damage to a larger number of areas within the motor system than the non-paretic group suggesting that such damage increases the probability of ipsilesional deficits in dynamic control for modulating torque amplitude after left hemisphere damage

    On the Role of Object Information in Action Observation: An fMRI Study

    Get PDF
    Observing other people’s actions activates a network of brain regions that is also activated during the execution of these actions. Here, we used functional magnetic resonance imaging to test whether these “mirror” regions in frontal and parietal cortices primarily encode the spatiomotor aspects or the functional goal-related aspects of observed tool actions. Participants viewed static depictions of actions consisting of a tool object (e.g., key) and a target object (e.g., keyhole). They judged the actions either with regard to whether the objects were oriented correctly for the action to succeed (spatiomotor task) or whether an action goal could be achieved with the objects (function task). Compared with a control condition, both tasks activated regions in left frontoparietal cortex previously implicated in action observation and execution. Of these regions, the premotor cortex and supramarginal gyrus were primarily activated during the spatiomotor task, whereas the middle frontal gyrus was primarily activated during the function task. Regions along the intraparietal sulcus were more strongly activated during the spatiomotor task but only when the spatiomotor properties of the tool object were unknown in advance. These results suggest a division of labor within the action observation network that maps onto a similar division previously proposed for action execution
    corecore