542 research outputs found
New insights into pedestrian flow through bottlenecks
Capacity estimation is an important tool for the design and dimensioning of
pedestrian facilities. The literature contains different procedures and
specifications which show considerable differences with respect to the
estimated flow values. Moreover do new experimental data indicate a stepwise
growing of the capacity with the width and thus challenge the validity of the
specific flow concept. To resolve these differences we have studied
experimentally the unidirectional pedestrian flow through bottlenecks under
laboratory conditions. The time development of quantities like individual
velocities, density and individual time gaps in bottlenecks of different width
is presented. The data show a linear growth of the flow with the width. The
comparison of the results with experimental data of other authors indicates
that the basic assumption of the capacity estimation for bottlenecks has to be
revised. In contradiction with most planning guidelines our main result is,
that a jam occurs even if the incoming flow does not overstep the capacity
defined by the maximum of the flow according to the fundamental diagram.Comment: Traffic flow, pedestrian traffic, crowd dynamics, capacity of
bottlenecks (16 pages, 8 figures); (+ 3 new figures and minor revisions
Nuclear and Particle Physics applications of the Bohm Picture of Quantum Mechanics
Approximation methods for calculating individual particle/ field motions in
spacetime at the quantum level of accuracy (a key feature of the Bohm Picture
of Quantum Mechanics (BP)), are studied. Modern textbook presentations of
Quantum Theory are used throughout, but only to provide the necessary, already
existing, tested formalisms and calculational techniques. New coherent
insights, reinterpretations of old solutions and results, and new (in principle
testable) quantitative and qualitative predictions, can be obtained on the
basis of the BP that complete the standard type of postdictions and
predictions.Comment: 41 page
Quantum mechanics: Myths and facts
A common understanding of quantum mechanics (QM) among students and practical
users is often plagued by a number of "myths", that is, widely accepted claims
on which there is not really a general consensus among experts in foundations
of QM. These myths include wave-particle duality, time-energy uncertainty
relation, fundamental randomness, the absence of measurement-independent
reality, locality of QM, nonlocality of QM, the existence of well-defined
relativistic QM, the claims that quantum field theory (QFT) solves the problems
of relativistic QM or that QFT is a theory of particles, as well as myths on
black-hole entropy. The fact is that the existence of various theoretical and
interpretational ambiguities underlying these myths does not yet allow us to
accept them as proven facts. I review the main arguments and counterarguments
lying behind these myths and conclude that QM is still a
not-yet-completely-understood theory open to further fundamental research.Comment: 51 pages, pedagogic review, revised, new references, to appear in
Found. Phy
CP asymmetry in in a general two-Higgs-doublet model with fourth-generation quarks
We discuss the time-dependent CP asymmetry of decay in an
extension of the Standard Model with both two Higgs doublets and additional
fourth-generation quarks. We show that although the Standard Model with
two-Higgs-doublet and the Standard model with fourth generation quarks alone
are not likely to largely change the effective from the decay of
, the model with both additional Higgs doublet and
fourth-generation quarks can easily account for the possible large negative
value of without conflicting with other experimental
constraints. In this model, additional large CP violating effects may arise
from the flavor changing Yukawa interactions between neutral Higgs bosons and
the heavy fourth generation down type quark, which can modify the QCD penguin
contributions. With the constraints obtained from processes
such as and , this model can lead to the
effective to be as large as in the CP asymmetry of .Comment: 13 pages, 5 figures, references added, to appear in Eur.Phys.J.
Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0
Soft photons inside hadronic jets converted in front of the DELPHI main
tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the
kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to
the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the
experimental data as compared to the Monte Carlo predictions is observed. This
excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/-
0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected
level of the inner hadronic bremsstrahlung (which is not included in the Monte
Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the
excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8),
which is similar in strength to the anomalous soft photon signal observed in
fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
- …
