120 research outputs found

    The field for initiative in business administration

    Full text link
    Thesis (M.B.A.)--Boston University, 1942. This item was digitized by the Internet Archive

    Technologies for restricting mould growth on baled silage

    Get PDF
    End of project reportSilage is made on approximately 86% of Irish farms, and 85% of these make some baled silage. Baled silage is particularly important as the primary silage making, storage and feeding system on many beef and smaller sized farms, but is also employed as a secondary system (often associated with facilitating grazing management during mid-summer) on many dairy and larger sized farms (O’Kiely et al., 2002). Previous surveys on farms indicated that the extent of visible fungal growth on baled silage was sometimes quite large, and could be a cause for concern. Whereas some improvements could come from applying existing knowledge and technologies, the circumstances surrounding the making and storage of baled silage suggested that environmental conditions within the bale differed from those in conventional silos, and that further knowledge was required in order to arrive at a secure set of recommendations for baled silage systems. This report deals with the final in a series (O’Kiely et al., 1999; O’Kiely et al., 2002) of three consecutive research projects investigating numerous aspect of the science and technology of baled silage. The success of each depended on extensive, integrated collaboration between the Teagasc research centres at Grange and Oak Park, and with University College Dublin. As the series progressed the multidisciplinary team needed to underpin the programme expanded, and this greatly improved the amount and detail of the research undertaken. The major objective of the project recorded in this report was to develop technologies to improve the “hygienic value” of baled silage

    Growth of Lion and Puma Lentiviruses in Domestic Cat Cells and Comparisons with FIV

    Get PDF
    AbstractFeline immunodeficiency virus (FIV-Fca) is a lentivirus that causes gradual immunological deterioration in domestic cats. Lentiviruses related to FIV have been detected in several nondomestic feline species; the biologic significance of these viruses remains to be defined. To examine thein vitrocell tropism of these nondomestic cat lentiviruses, prototypical puma and lion lentiviruses (FIV-Pco and FIV-Ple) were cultured in a variety of feline cell cultures. A domestic cat T lymphoma cell line, 3201, best supported the replication of both FIV-Pco and FIV-Ple. Moreover, FIV-Ple was lytic for these cells. RT-PCR amplification of a conservedpolgene region demonstrated species-specific primer homology. Sequence and phylogenetic analyses of this amplification product confirmed the identity of the replicating viruses and classified two previously uncharacterized viruses within predictable lion and puma clades. Sequence analysis of a conservedpolregion demonstrated homology with previously characterized FIV-Ple and FIV-Pco. Western blot analysis using domestic cat anti-FIV-Fca sera showed that both FIV-Pco and FIV-Ple were antigenically related, to differing degrees, to three serotypes of FIV-Fca. These studies demonstrate that though nondomestic cat lentiviruses differ significantly from FIV-Fca and that a viral-specific protocol may be necessary for sensitive viral detection, these viruses can replicate in cells of domestic cats, suggesting the potential for cross-species transmission

    Cost-effectiveness analysis of introducing RDTs for malaria diagnosis as compared to microscopy and presumptive diagnosis in central and peripheral public health facilities in Ghana.

    Get PDF
    Cost-effectiveness information on where malaria rapid diagnostic tests (RDTs) should be introduced is limited. We developed incremental cost-effectiveness analyses with data from rural health facilities in Ghana with and without microscopy. In the latter, where diagnosis had been presumptive, the introduction of RDTs increased the proportion of patients who were correctly treated in relation to treatment with antimalarials, from 42% to 65% at an incremental societal cost of Ghana cedis (GHS)12.2 (US8.3)peradditionalcorrectlytreatedpatients.Inthe"microscopysetting"therewasnoadvantagetoreplacingmicroscopybyRDTasthecostandproportionofcorrectlytreatedpatientsweresimilar.ResultsweresensitivetoadecreaseinthecostofRDTs,whichcostGHS1.72(US8.3) per additional correctly treated patients. In the "microscopy setting" there was no advantage to replacing microscopy by RDT as the cost and proportion of correctly treated patients were similar. Results were sensitive to a decrease in the cost of RDTs, which cost GHS1.72 (US1.17) per test at the time of the study and to improvements in adherence to negative tests that was just above 50% for both RDTs and microscopy

    Identification of the Staphylococcus aureus MSCRAMM clumping factor B (ClfB) binding site in the αC-domain of human fibrinogen

    Get PDF
    Clumping factor B (ClfB) of Staphylococcus aureus binds to cytokeratin 10 and to fibrinogen. In this study the binding site in human fibrinogen was localized to a short region within the C terminus of the Aα-chain. ClfB only bound to the Aα-chain of fibrinogen in a ligand-affinity blot and in solid-phase assays with purified recombinant fibrinogen chains. A variant of fibrinogen with wild-type Bβ- and γ-chains but with a deletion that lacked the C-terminal residues from 252–610 of the Aα-chain did not support adherence of S. aureus Newman expressing ClfB. A series of truncated mutants of the recombinant Aα-chain were tested for their ability to support adherence of S. aureus Newman ClfB+, which allowed the binding site to be localized to a short segment of the unfolded flexible repeated sequence within the C terminus of the Aα-chain. This was confirmed by two amino acid substititions within repeat 5 of the recombinant Aα-chain which did not support adherence of Newman ClfB+. Lactococcus lactis expressing ClfB mutants with amino acid substitutions (N256 and Q235) located in the putative ligand-binding trench between domains N2 and N3 of the A-domain were defective in adherence to immobilized fibrinogen and cytokeratin 10, suggesting that both ligands bind to the same or overlapping regions

    Ultrafast all-optical switching by single photons

    Full text link
    An outstanding goal in quantum optics is the realization of fast optical non-linearities at the single-photon level. Such non-linearities would allow for the realization of optical devices with new functionalities such as a single-photon switch/transistor or a controlled-phase gate, which could form the basis of future quantum optical technologies. While non-linear optics effects at the single-emitter level have been demonstrated in different systems, including atoms coupled to Fabry-Perot or toroidal micro-cavities, super-conducting qubits in strip-line resonators or quantum dots (QDs) in nano-cavities, none of these experiments so far has demonstrated single-photon switching on ultrafast timescales. Here, we demonstrate that in a strongly coupled QD-cavity system the presence of a single photon on one of the fundamental polariton transitions can turn on light scattering on a transition from the first to the second Jaynes-Cummings manifold with a switching time of 20 ps. As an additional device application, we use this non-linearity to implement a single-photon pulse-correlator. Our QD-cavity system could form the building-block of future high-bandwidth photonic networks operating in the quantum regime

    Rare coding variants in ten genes confer substantial risk for schizophrenia

    Get PDF
    Rare coding variation has historically provided the most direct connections between gene function and disease pathogenesis. By meta-analysing the whole exomes of 24,248 schizophrenia cases and 97,322 controls, we implicate ultra-rare coding variants (URVs) in 10 genes as conferring substantial risk for schizophrenia (odds ratios of 3-50, PPeer reviewe

    Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition

    Get PDF
    Biodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well-being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources. Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within-species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technological advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv) Effective Population Size (Ne). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modeling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large-scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species' long-term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally

    Characterisation of age and polarity at onset in bipolar disorder

    Get PDF
    Background Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. Aims To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. Method Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. Results Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. Conclusions AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore