78 research outputs found

    Investigation of new brominated and organophosphorous flame retardants in Svalbard benthic marine food web; FlammePlank

    Get PDF
    Project manager Pernilla CarlssonThe aim of this pilot-study was to use silicone rubber-based passive samplers to measure novel brominated flame retardants (nBFRs), polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in seawater and air around Longyearbyen as well as investigate the presence of those compounds in sediment and biota (amphipods, Gammarus spp.) nearby Longyearbyen. Passive samplers require no electricity and provide an integrated picture of the levels of the targeted compounds over time. The results were combined with the sampled sediment and Gammarus spp. to assess concentrations in the environment. Out of all substances under study, PBDE-47 and -99, α- and β- tetrabromoethylcyclohexane (TBECH), syn- and anti-DP were detected in all investigated matrices. Freely dissolved water concentrations of ΣDPs (3 pg/L) were in line with recent Arctic studies, while ΣPBDEs (3 pg/L) were comparable to urban rivers in southern Norway. Nevertheless, for some compounds, especially the lighter and most volatile ones, long-range transport is most likely a more important contribution to observed levels than local sources. For other compounds, e.g. PBDEs, local sources might still play a role for the load of contaminants into the surrounding environment. The present study is the first to report a suit of nBFRs and DPs in Arctic benthic fauna. Many of the nBFRs and DPs were detected in sediment and in the amphipods. We recommend further studies with respect to measurements of concentrations over time, and in other species as well, to better understand whether the nBFRs and DPs are common in the marine environment on Svalbard. We recommend that local sources of flame retardants in remote areas receive more attention in the future.Svalbard miljøvernfondpublishedVersio

    Monitoring persistent organic chemicals in Antarctica in support of global chemical policy: a horizon scan of priority actions and challenges

    Get PDF
    Global production and emission of chemicals exceeds societal capacities for assessment and monitoring. This situation calls for improved chemical regulatory policy frameworks and increased support for expedited decision making within existing frameworks. The polar regions of the Earth represent unique sentinel areas for the study of global chemical behaviour, and data arising from these areas can strengthen existing policy frameworks. However, chemical pollution research and monitoring in the Antarctic is underdeveloped, with geopolitical complexities and the absence of legal recognition of international chemical policy serving to neutralise progress made in other global regions. This Personal View represents a horizon scan by the action group Input Pathways of Persistent Organic Pollutants to Antarctica, of the Scientific Committee for Antarctic Research. Four priority research and research facilitation gaps are outlined, with recommendations for Antarctica Treaty parties for strategic action against these priorities

    Spatial variability and temporal changes of POPs in European background air

    Get PDF
    Concentration data on POPs in air is necessary to assess the effectiveness of international regulations aiming to reduce the emissions of persistent organic pollutants (POPs) into the environment. POPs in European background air are continuously monitored using active- and passive air sampling techniques at a limited number of atmospheric monitoring stations. As a result of the low spatial resolution of such continuous monitoring, there is limited understanding of the main sources controlling the atmospheric burdens of POPs across Europe. The key objectives of this study were to measure the spatial and temporal variability of concentrations of POPs in background air with a high spatial resolution (n = 101) across 33 countries within Europe, and to use observations and models in concert to assess if the measured concentrations are mainly governed by secondary emissions or continuing primary emissions. Hexachlorobenzene (HCB) was not only the POP detected in highest concentrations (median: 67 pg/m3), but also the only POP that had significantly increased over the last decade. HCB was also the only POP that was positively correlated to latitude. For the other targeted POPs, the highest concentrations were observed in the southern part of Europe, and a declining temporal trend was observed. Spatial differences in temporal changes were observed. For example, γ-HCH (hexachlorocyclohexane) had the largest decrease in the south of Europe, while α-HCH had declined the most in central-east Europe. High occurrence of degradation products of the organochlorine pesticides and isomeric ratios indicated past usage. Model predictions of PCB-153 (2,2’,4,4’,5,5’-hexachlorobiphenyl) by the Global EMEP Multi-media Modelling System suggest that secondary emissions are more important than primary emissions in controlling atmospheric burdens, and that the relative importance of primary emissions are more influential in southern Europe compared to northern Europe. Our study highlights the major advantages of combining high spatial resolution observations with mechanistic modelling approaches to provide insights on the relative importance of primary- and secondary emission sources in Europe. Such knowledge is considered vital for policy makers aiming to assess the potential for further emission reduction strategies of legacy POPs

    Polycyclic Aromatic Hydrocarbons not declining in Arctic air despite global emission reduction

    Get PDF
    Two decades of atmospheric measurements of polycyclic aromatic hydrocarbons (PAHs) were conducted at three Arctic sites, i.e., Alert, Canada; Zeppelin, Svalbard; and Pallas, Finland. PAH concentrations decrease with increasing latitude in the order of Pallas>Zeppelin>Alert. Forest fire was identified as an important contributing source. Three representative PAHs, phenanthrene (PHE), pyrene (PYR), and benzo(a)pyrene (BaP) were selected for the assessment of their long-term trends. Significant decline of these PAHs was not observed contradicting the expected decline due to PAH emission reductions. A global 3-D transport model was employed to simulate the concentrations of these three PAHs at the three sites. The model predicted that warming in the Arctic would cause the air concentrations of PHE and PYR to increase in the Arctic atmosphere, while that of BaP, which tends to be particle-bound, is less affected by temperature. The expected decline due to the reduction of global PAH emissions is offset by the increment of volatilization caused by warming. This work shows that this phenomenon may affect the environmental occurrence of other anthropogenic substances, such as, the more volatile flame retardants and pesticides

    Global intercomparison of polyurethane foam passive air samplers evaluating sources of variability in SVOC measurements

    Get PDF
    Polyurethane foam passive air samplers (PUF-PAS) are the most common type of passive air sampler used for a range of semi-volatile organic compounds (SVOCs), including regulated persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs), and emerging contaminants (e.g., novel flame retardants, phthalates, current-use pesticides). Data from PUF-PAS are key indicators of effectiveness of global regulatory actions on SVOCs, such as the Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants. While most PUF-PAS use similar double-dome metal shielding, there is no standardized dome size, shape, or deployment configuration, with many different PUF-PAS designs used in regional and global monitoring. Yet, no information is available on the comparability of data from studies using different PUF-PAS designs. We brought together 12 types of PUF-PAS used by different research groups around the world and deployed them in a multi-part intercomparison to evaluate the vari-ability in reported concentrations introduced by different elements of PAS monitoring. PUF-PAS were deployed for 3 months in outdoor air in Kjeller, Norway in 2015-2016 in three phases to capture (1) the influence of sampler design on data comparability, (2) the influence of analytical variability when samplers are analyzed at different laboratories, and (3) the overall variability in global monitoring data introduced by differences in sampler configurations and analytical methods. Results indicate that while differences in sampler design (in particular, the spacing between the upper and lower sampler bowls) account for up to 50 % differences in masses collected by samplers, the variability introduced by analysis in different laboratories far exceeds this amount, resulting in differences spanning orders of magnitude for POPs and PAHs. The high level of variability due to analysis in different laboratories indicates that current SVOC air sampling data (i.e., not just for PUF-PAS but likely also for active air sampling) are not directly comparable between laboratories/monitoring programs. To support on-going efforts to mobilize more SVOC data to contribute to effectiveness evaluation, intercalibration exercises to account for uncertainties in air sampling, repeated at regular intervals, must be established to ensure analytical comparability and avoid biases in global-scale assessments of SVOCs in air caused by differences in laboratory performance

    Levels of persistent organic pollutants (POPs) in the Antarctic atmosphere over time (1980 to 2021) and estimation of their atmospheric half-lives

    Get PDF
    Persistent organic pollutants (POPs) are synthetic compounds that were intentionally produced in large quantities and have been distributed in the global environment, originating a threat due to their persistence, bioaccumulative potential, and toxicity. POPs reach the Antarctic continent through long-range atmospheric transport (LRAT). In these areas, low temperatures play a significant role in the environmental fate of POPs, retaining them for a long time due to cold trapping by diffusion and wet deposition, acting as a net sink for many POPs. However, in the current context of climate change, the remobilization of POPs that were trapped in water, ice, and soil for decades is happening. Therefore, continuous monitoring of POPs in polar air is necessary to assess whether there is a recent re-release of historical pollutants back to the environment. We reviewed the scientific literature on atmospheric levels of several POP families (polychlorinated biphenyls - PCBs, hexachlorobenzene - HCB, hexachlorocyclohexanes - HCHs, and dichlorodiphenyltrichloroethane - DDT) from 1980 to 2021. We estimated the atmospheric half-life using characteristic decreasing times (TD). We observed that HCB levels in the Antarctic atmosphere were higher than the other target organochlorine pesticides (OCPs), but HCB also displayed higher fluctuations and did not show a significant decrease over time. Conversely, the atmospheric levels of HCHs, some DDTs, and PCBs have decreased significantly. The estimated atmospheric half-lives for POPs decreased in the following order: 4,4' DDE (13.5 years) > 4,4' DDD (12.8 years) > 4,4' DDT (7.4 years) > 2,4' DDE (6.4 years) > 2,4' DDT (6.3 years) > α-HCH (6 years) > HCB (6 years) > 3-HCH (4.2 years). For PCB congeners, they decreased in the following order: PCB 153 (7.6 years) > PCB 138 (6.5 years) > PCB 101 (4.7 years) > PCB 180 (4.6 years) > PCB 28 (4 years) > PCB 52 (3.7 years) > PCB 118 (3.6 years). For HCH isomers and PCBs, the Stockholm Convention (SC) ban on POPs did have an impact on decreasing their levels during the last decades. Nevertheless, their ubiquity in the Antarctic atmosphere shows the problematic issues related to highly persistent synthetic chemicals.This study was funded by ANID/FONDE CYT/Iniciación 11150548, ANID/FONDECYT/Regular 1161504, ANID/FONDECYT/Regular 1210946, ANID/PCI REDI170292, ANID-PIA-INACH-ACT192057, INACH REGULAR RT_12_17 https://doi.org/10.5194/acp-23-8103-2023 Atmos. Chem. Phys., 23, 8103–8118, 2023 8114 T. Luarte et al.: POP trends in the Antarctic atmosphere (Cristóbal Galbán-Malagón). Support through the PhD Grant Program and INACH DG_02_21.Peer reviewe

    Air pollution trends in the EMEP region between 1990 and 2012

    Get PDF
    The present report synthesises the main features of the evolution over the 1990-2012 time period of the concentration and deposition of air pollutants relevant in the context of the Convention on Long-range Transboundary Air Pollution: (i) ozone, (ii) sulfur and nitrogen compounds and particulate matter, (iii) heavy metals and persistent organic pollutants. It is based on observations gathered in State Parties to the Convention within the EMEP monitoring network of regional background stations, as well as relevant modelling initiatives. Joint Report of: EMEP Task Force on Measurements and Modelling (TFMM), Chemical Co-ordinating Centre (CCC), Meteorological Synthesizing Centre-East (MSC-E), Meteorological Synthesizing Centre-West (MSC-W)

    The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! [Commentary]

    Get PDF
    The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken

    Status for miljøet i norske havområder - Rapport fra Overvåkingsgruppen 2023

    Get PDF
    I denne rapporten gir Overvåkingsgruppen, for første gang, en felles vurdering av miljøtilstanden i Barentshavet og havområdene utenfor Lofoten, Norskehavet og Nordsjøen med Skagerrak. Det er også første rapport som bruker resultater fra det nylig utviklede fagsystemet for vurdering av økologisk tilstand. I denne rapporten dekkes to hovedtemaer: (1) Dominerende trekk i status og utvikling i økosystemet i alle tre havområdene, basert på vurderingene av økologisk tilstand, Overvåkingsgruppens rapport om forurensning fra 2022, indikatorer fra Overvåkingsgruppen som ikke er dekket under vurdering av økologisk tilstand, samt rapporter og annen relevant informasjon fra forskning, og (2) en vurdering av karbonbinding i marint plankton, marine vegetasjonstyper og marine sedimenter. I tillegg er det gitt en oppsummering for endringer i ytre påvirkning, vurdering av kunnskapsbehov samt en vurdering av indikatorverdier i forhold til referanseverdier og tiltaksgrenser. Vurderingen av dominerende trekk i utvikling og tilstand av miljøet som er gitt i kapittel 2, utgjør Overvåkingsgruppens bidrag til Faglig forums samlerapport om det faglige grunnlaget for revisjon og oppdatering av de helhetlige forvaltningsplanene for norske havområder.Status for miljøet i norske havområder - Rapport fra Overvåkingsgruppen 2023publishedVersio

    Widespread pesticide distribution in the European atmosphere questions their degradability in air

    Get PDF
    Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved
    corecore