124 research outputs found

    Modified gravity without dark matter

    Full text link
    On an empirical level, the most successful alternative to dark matter in bound gravitational systems is the modified Newtonian dynamics, or MOND, proposed by Milgrom. Here I discuss the attempts to formulate MOND as a modification of General Relativity. I begin with a summary of the phenomenological successes of MOND and then discuss the various covariant theories that have been proposed as a basis for the idea. I show why these proposals have led inevitably to a multi-field theory. I describe in some detail TeVeS, the tensor-vector-scalar theory proposed by Bekenstein, and discuss its successes and shortcomings. This lecture is primarily pedagogical and directed to those with some, but not a deep, background in General RelativityComment: 28 pages, 10 figures, lecture given at Third Aegean Summer School, The Invisible Universe: Dark Matter and Dark Energy, minor errors corrected, references update

    An audit of uncertainty in multi-scale cardiac electrophysiology models

    Get PDF
    Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue ‘Uncertainty quantification in cardiac and cardiovascular modelling and simulation’

    Can the Pioneer anomaly be of gravitational origin? A phenomenological answer

    Full text link
    In order to satisfy the equivalence principle, any non-conventional mechanism proposed to gravitationally explain the Pioneer anomaly, in the form in which it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave out of consideration its impact on the motion of the planets of the Solar System as well, especially those orbiting in the regions in which the anomalous behavior of the Pioneer probes manifested itself. In this paper we, first, discuss the residuals of the right ascension \alpha and declination \delta of Uranus, Neptune and Pluto obtained by processing various data sets with different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second, we use the latest determinations of the perihelion secular advances of some planets in order to put on the test two gravitational mechanisms recently proposed to accommodate the Pioneer anomaly based on two models of modified gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered Uranus and Neptune to perform a further, independent test of the hypothesis that a Pioneer-like acceleration can also affect the motion of the outer planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081. Final version to appear in Foundations of Physic

    Geometric Entanglement of Symmetric States and the Majorana Representation

    Full text link
    Permutation-symmetric quantum states appear in a variety of physical situations, and they have been proposed for quantum information tasks. This article builds upon the results of [New J. Phys. 12, 073025 (2010)], where the maximally entangled symmetric states of up to twelve qubits were explored, and their amount of geometric entanglement determined by numeric and analytic means. For this the Majorana representation, a generalization of the Bloch sphere representation, can be employed to represent symmetric n qubit states by n points on the surface of a unit sphere. Symmetries of this point distribution simplify the determination of the entanglement, and enable the study of quantum states in novel ways. Here it is shown that the duality relationship of Platonic solids has a counterpart in the Majorana representation, and that in general maximally entangled symmetric states neither correspond to anticoherent spin states nor to spherical designs. The usability of symmetric states as resources for measurement-based quantum computing is also discussed.Comment: 10 pages, 8 figures; submitted to Lecture Notes in Computer Science (LNCS

    Low-temperature co-sintering for fabrication of zirconia/ceria bi-layer electrolyte via tape casting using a Fe2O3 sintering aid

    Get PDF
    Bilayer electrolytes have potential in solid oxide cells to improve ionic conduction whilst blocking electronic conduction. GDC/YSZ bilayer electrolyte processinghas provenproblematic due to thermochemical instability at high sintering temperatures. We first match the shrinkage profile of the two bulk materials using a Fe2O3 sintering additive. Additions of 5 mol% of Fe2O3 in the GDC layer and 2 mol% of Fe2O3 in the YSZ layer prevents delamination during co-sintering. The addition of Fe2O3 promotes densification, enabling achievement of a dense bilayer at a reduced sintering temperature of 1300 ◦C; ∼150 ◦C below conventional sintering temperatures. Elemental analysis showed the compositional distribution curves across the bilayer interface to be asymmetric when Fe2O3 is employed. The Fe2O3 increases the total conductivity of the bilayer electrolyte by an order of magnitude; this is explained by the effect of Fe2O3 on reducing the resistive solid solution interlayer at YSZ/GDC interface from ∼15 to ∼5 m

    A spatially-VSL gravity model with 1-PN limit of GRT

    Full text link
    A scalar gravity model is developed according the 'geometric conventionalist' approach introduced by Poincare (Einstein 1921, Poincare 1905, Reichenbach 1957, Gruenbaum1973). In principle this approach allows an alternative interpretation and formulation of General Relativity Theory (GRT), with distinct i) physical congruence standard, and ii) gravitation dynamics according Hamilton-Lagrange mechanics, while iii) retaining empirical indistinguishability with GRT. In this scalar model the congruence standards have been expressed as gravitationally modified Lorentz Transformations (Broekaert 2002). The first type of these transformations relate quantities observed by gravitationally 'affected' (natural geometry) and 'unaffected' (coordinate geometry) observers and explicitly reveal a spatially variable speed of light (VSL). The second type shunts the unaffected perspective and relates affected observers, recovering i) the invariance of the locally observed velocity of light, and ii) the local Minkowski metric (Broekaert 2003). In the case of a static gravitation field the model retrieves the phenomenology implied by the Schwarzschild metric. The case with proper source kinematics is now described by introduction of a 'sweep velocity' field w: The model then provides a hamiltonian description for particles and photons in full accordance with the first Post-Newtonian approximation of GRT (Weinberg 1972, Will 1993).Comment: v1: 11 pages, GR17 conf. paper, Dublin 2004, v2: WEP issue solved, section on acceleration transformation added, text improved, more references, same results, v3: typos removed, footnotes, added and references updated, v4: appendix added, improved tex

    High-field phase-diagram of Fe arsenide superconductors

    Full text link
    Here, we report an overview of the phase diagram of single layered and double layered Fe arsenide superconductors at high magnetic fields. Our systematic magnetotransport measurements of polycrystalline SmFeAsO1x_{1-x}Fx_x at different doping levels confirm the upward curvature of the upper critical magnetic field Hc2(T)H_{c2}(T) as a function of temperature TT defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single and double layered compounds. In all compounds explored by us the zero temperature upper critical field Hc2(0)H_{c2}(0), estimated either through the Ginzburg-Landau or the Werthamer-Helfand-Hohenberg single gap theories, strongly surpasses the weak coupling Pauli paramagnetic limiting field. This clearly indicates the strong coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses γ=(mc/mab)1/2\gamma = (m_c/m_{ab})^{1/2} for carriers moving along the c-axis and the ab planes, respectively, is relatively modest as compared to the high-TcT_c cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field Hm(T)H_m(T), separating the vortex-solid from the vortex-liquid phase in the single layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.Comment: 12 pages, for Physica C, special issue on the Fe oxypnictides (revised version

    Determination of Superconducting Gap of SmFeAsFxO1-x Superconductors by Andreev Reflection Spectroscopy

    Full text link
    The superconducting gap in FeAs-based superconductor SmFeAs(O1-xFx) (x = 0.15 and 0.30) and the temperature dependence of the sample with x = 0.15 have been measured by Andreev reflection spectroscopy. The intrinsic superconducting gap is independent of contacts while many other "gap-like" features vary appreciably for different contacts. The determined gap value of 2D = 13.34 +/-0.47 meV for SmFeAs(O0.85F0.15) gives 2D/kBTC = 3.68, close to the BCS prediction of 3.53. The superconducting gap decreases with temperature and vanishes at TC, in a manner similar to the BCS behavior but dramatically different from that of the nodal pseudogap behavior in cuprate superconductors.Comment: 13 pages, 9 figures, Special Issue of Physica C on Superconducting Pnictide

    Direct Simulation of a Solidification Benchmark Experiment

    No full text
    International audienceA solidification benchmark experiment is simulated using a three-dimensional cellular automaton-finite element solidification model. The experiment consists of a rectangular cavity containing a Sn-3 wt pct Pb alloy. The alloy is first melted and then solidified in the cavity. A dense array of thermocouples permits monitoring of temperatures in the cavity and in the heat exchangers surrounding the cavity. After solidification, the grain structure is revealed by metallography. X-ray radiography and inductively coupled plasma spectrometry are also conducted to access a distribution map of Pb, or macrosegregation map. The solidification model consists of solutions for heat, solute mass, and momentum conservations using the finite element method. It is coupled with a description of the development of grain structure using the cellular automaton method. A careful and direct comparison with experimental results is possible thanks to boundary conditions deduced from the temperature measurements, as well as a careful choice of the values of the material properties for simulation. Results show that the temperature maps and the macrosegregation map can only be approached with a three-dimensional simulation that includes the description of the grain structure
    corecore