37 research outputs found

    Abundance Patterns in S-type AGB stars : Setting Constraints on Nucleosynthesis and Stellar Evolution Models

    Full text link
    During the evolution on the AGB, S-type stars are the first objects to experience s-process nucleosynthesis and third dredge-ups, and therefore to exhibit sprocess signatures in their atmospheres. Their significant mass loss rates (10^-7 to 10^-6 M*/year) make them major contributors to the AGB nucleosynthesis yields at solar metallicity. Precise abundance determinations in S stars are of the utmost importance for constraining e.g. the third dredge-up luminosity and efficiency (which has been only crudely parameterized in all current nucleosynthetic models so far). Here, dedicated S-star model atmospheres are used to determine precise abundances of key s-process elements, and to set constraints on nucleosynthesis and stellar evolution models. A special interest is paid to technetium, an element with no stable isotopes (99Tc, the only isotope produced by the s-process in AGB stars, has a half-life of 2.1 x 10^5 years). Its detection is considered as the best signature that the star effectively populates the thermally-pulsing AGB phase of evolution. The derived Tc/Zr abundances are compared, as a function of the derived [Zr/Fe] overabundances, with AGB stellar model predictions. The [Zr/Fe] overabundances are in good agreement with the model predictions, while the Tc/Zr abundances are slightly overpredicted. This discrepancy can help to set better constraints on nucleosynthesis and stellar evolution models of AGB stars.Comment: 5 pages, 3 figures, To be published in the proceedings of the conference "Why Galaxies Care about AGB Stars II", held in Vienna, August 16-20, 2010; eds Franz Kerschbaum, Thomas Lebzelter, and Bob Wing, ASP Conf. Serie

    The orbits of subdwarf B + main-sequence binaries. I: The sdB+G0 system PG 1104+243

    Full text link
    The predicted orbital period histogram of an sdB population is bimodal with a peak at short ( 250 days) periods. Observationally, there are many short-period sdB systems known, but only very few long-period sdB binaries are identified. As these predictions are based on poorly understood binary interaction processes, it is of prime importance to confront the predictions to observational data. In this contribution we aim to determine the absolute dimensions of the long-period sdB+MS binary system PG1104+243. High-resolution spectroscopy time-series were obtained with HERMES at the Mercator telescope at La Palma, and analyzed to obtain radial velocities of both components. Photometry from the literature was used to construct the spectral energy distribution (SED) of the binary. Atmosphere models were used to fit this SED and determine the surface gravity and temperature of both components. The gravitational redshift provided an independent confirmation of the surface gravity of the sdB component. An orbital period of 753 +- 3 d and a mass ratio of q = 0.637 +- 0.015 were found from the RV-curves. The sdB component has an effective temperature of Teff = 33500 +- 1200 K and a surface gravity of logg = 5.84 +- 0.08 dex, while the cool companion is found to be a G-type star with Teff = 5930 +- 160 K and logg = 4.29 +- 0.05 dex. Assuming a canonical mass of Msdb = 0.47 Msun, the MS component has a mass of 0.74 +- 0.07 Msun, and its Teff corresponds to what is expected for a terminal age main-sequence star with sub-solar metalicity. PG1104+243 is the first long-period sdB binary in which accurate physical parameters of both components could be determined, and the first sdB binary in which the gravitational redshift is measured. Furthermore, PG1104+243 is the first sdB+MS system that shows consistent evidence for being formed through stable Roche-lobe overflow.Comment: Accepted by A&A on 05-10-201

    When an old star smolders: On the detection of hydrocarbon emission from S-type AGB stars

    Full text link
    Polycyclic aromatic hydrocarbons (PAHs) produce characteristic infrared emission bands that have been observed in a wide range of astrophysical environments, where carbonaceous material is subjected to ultraviolet (UV) radiation. Although PAHs are expected to form in carbon-rich AGB stars, they have up to now only been observed in binary systems where a hot companion provides a hard radiation field. In this letter, we present low-resolution infrared spectra of four S-type AGB stars, selected from a sample of 90 S-type AGB stars observed with the infrared spectrograph aboard the Spitzer satellite. The spectra of these four stars show the typical infrared features of PAH molecules. We confirm the correlation between the temperature of the central star and the centroid wavelength of the 7.9 {\mu}m feature, present in a wide variety of stars spanning a temperature range from 3 000 to 12 000 K. Three of four sources presented in this paper extend this relation towards lower temperatures. We argue that the mixture of hydrocarbons we see in these S-stars has a rich aliphatic component. The fourth star, BZ CMa, deviates from this correlation. Based on the similarity with the evolved binary TU Tau, we predict that BZ CMa has a hot companion as well.Comment: 5 pages, 2 figures, 2 table

    Discovery of a TiO emission band in the infrared spectrum of the S star NP Aurigae

    Full text link
    We report on the discovery of an infrared emission band in the Spitzer spectrum of the S-type AGB star NP Aurigae that is caused by TiO molecules in the circumstellar environment. We modelled the observed emission to derive the temperature of the TiO molecules (\approx 600 K), an upper limit on the column density (\approx 10^17.25 cm^{-2}) and a lower limit on the spatial extent of the layer that contains these molecules. (\approx 4.6 stellar radii). This is the first time that this TiO emission band is observed. A search for similar emission features in the sample of S-type stars yielded two additional candidates. However, owing to the additional dust emission, the identification is less stringent. By comparing the stellar characteristics of NP Aur to those of the other stars in our sample, we find that all stars with TiO emission show large-amplitude pulsations, s-process enrichment, and a low C/O ratio. These characteristics might be necessary requirements for a star to show TiO in emission, but they are not sufficient.Comment: 4 pages, 4 figures, letter to the edito

    Detection of gravity modes in the massive binary V380 Cyg from Kepler spacebased photometry and high-resolution spectroscopy

    Get PDF
    We report the discovery of low-amplitude gravity-mode oscillations in the massive binary star V380 Cyg, from 180 d of Kepler custom-aperture space photometry and 5 months of high-resolution high signal-to-noise spectroscopy. The new data are of unprecedented quality and allowed to improve the orbital and fundamental parameters for this binary. The orbital solution was subtracted from the photometric data and led to the detection of periodic intrinsic variability with frequencies of which some are multiples of the orbital frequency and others are not. Spectral disentangling allowed the detection of line-profile variability in the primary. With our discovery of intrinsic variability interpreted as gravity mode oscillations, V380 Cyg becomes an important laboratory for future seismic tuning of the near-core physics in massive B-type stars.Comment: 5 pages, 4 figures, 2 tables. Accepted for publication in MNRAS Letter

    The temperature and chronology of heavy-element synthesis in low-mass stars

    Full text link
    Roughly half of the heavy elements (atomic mass greater than that of iron) are believed to be synthesized in the late evolutionary stages of stars with masses between 0.8 and 8 solar masses. Deep inside the star, nuclei (mainly iron) capture neutrons and progressively build up (through the slow-neutron-capture process, or s-process) heavier elements that are subsequently brought to the stellar surface by convection. Two neutron sources, activated at distinct temperatures, have been proposed: 13C and 22Ne, each releasing one neutron per alpha-particle (4He) captured. To explain the measured stellar abundances, stellar evolution models invoking the 13C neutron source (which operates at temperatures of about one hundred million kelvin) are favoured. Isotopic ratios in primitive meteorites, however, reflecting nucleosynthesis in the previous generations of stars that contributed material to the Solar System, point to higher temperatures (more than three hundred million kelvin), requiring at least a late activation of 22Ne. Here we report a determination of the s-process temperature directly in evolved low-mass giant stars, using zirconium and niobium abundances, independently of stellar evolution models. The derived temperature supports 13C as the s-process neutron source. The radioactive pair 93Zr-93Nb used to estimate the s-process temperature also provides, together with the pair 99Tc-99Ru, chronometric information on the time elapsed since the start of the s-process, which we determine to be one million to three million years.Comment: 30 pages, 10 figure

    Measurement of the inelastic branch of the 14^{14}O(α,p)17^{17}F reaction: Implications for explosive burning in novae and x-ray bursters

    Get PDF
    A measurement of the inelastic component of the key astrophysical resonance in the 14O(α,p)17F reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the 14O(α,p)17F reaction rate. The current results for the reaction rate confirm that the 14O(α,p)17F reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the hot CNO cycles under the more extreme conditions found in x-ray bursters

    The Spitzer Spectroscopic Survey of S-type Stars

    Get PDF
    S-type AGB stars are thought to be in the transitional phase between M-type and C-type AGB stars. Because of their peculiar chemical composition, one may expect a strong influence of the stellar C/O ratio on the molecular chemistry and the mineralogy of the circumstellar dust. In this paper, we present a large sample of 87 intrinsic galactic S-type AGB stars, observed at infrared wavelengths with the Spitzer Space Telescope, and supplemented with ground-based optical data. On the one hand, we derive the stellar parameters from the optical spectroscopy and photometry, using a grid of model atmospheres. On the other, we decompose the infrared spectra to quantify the flux-contributions from the different dust species. Finally, we compare the independently determined stellar parameters and dust properties. For the stars without significant dust emission, we detect a strict relation between the presence of SiS absorption in the Spitzer spectra and the C/O ratio of the stellar atmosphere. These absorption bands can thus be used as an additional diagnostic for the C/O ratio. For stars with significant dust emission, we define three groups, based on the relative contribution of certain dust species to the infrared flux. We find a strong link between group-membership and C/O ratio. We show that these groups can be explained by assuming that the dust-condensation can be cut short before silicates are produced, while the remaining free atoms and molecules can then form the observed magnesium sulfides or the carriers of the unidentified 13 and 20 micron features. Finally, we present the detection of emission features attributed to molecules and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons and magnesium sulfide grains. We show that we often detect magnesium sulfides together with molecular SiS and we propose that it is formed by a reaction of SiS molecules with Mg.Comment: Accepted for publication in A&

    MELCHIORS: The Mercator Library of High Resolution Stellar Spectroscopy

    Get PDF
    Aims. Over the past decades, libraries of stellar spectra have been used in a large variety of science cases, including as sources of reference spectra for a given object or a given spectral type. Despite the existence of large libraries and the increasing number of projects of large-scale spectral surveys, there is to date only one very high-resolution spectral library offering spectra from a few hundred objects from the southern hemisphere (UVES-POP). We aim to extend the sample, offering a finer coverage of effective temperatures and surface gravity with a uniform collection of spectra obtained in the northern hemisphere.Methods. Between 2010 and 2020, we acquired several thousand echelle spectra of bright stars with the Mercator-HERMES spectrograph located in the Roque de Los Muchachos Observatory in La Palma, whose pipeline offers high-quality data reduction products. We have also developed methods to correct for the instrumental response in order to approach the true shape of the spectral continuum. Additionally, we have devised a normalisation process to provide a homogeneous normalisation of the full spectral range for most of the objects.Results. We present a new spectral library consisting of 3256 spectra covering 2043 stars. It combines high signal-to-noise and high spectral resolution over the entire range of effective temperatures and luminosity classes. The spectra are presented in four versions: raw, corrected from the instrumental response, with and without correction from the atmospheric molecular absorption, and normalised (including the telluric correction)
    corecore