594 research outputs found

    Nitrogen Uptake and Denitrification in Restored and Degraded-Urban Streams: Impacts of Organic Carbon and Integrated Stormwater Management

    Get PDF
    Managing the N cycle and restoring urban infrastructure are major challenges especially in urban ecosystems. Organic carbon is important in regulating ecosystem function and its source and abundance may be altered by urbanization. My research focused on urban-degraded, restored, and forested watersheds at the Baltimore LTER in the Chesapeake Bay watershed. In Chapter 2, I investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrification at the riparian-stream interface. Denitrification enzyme assay experiments showed carbon was limiting in hyporheic sediments and variable carbon sources (grass clippings, decomposing leaves, and periphyton) stimulated denitrification differently. Evidence from stable isotopes, molar C:N ratios, and lipid biomarkers suggested that urbanization can influence organic carbon sources and quality in streams, which may have substantial downstream impacts on ecosystem services such as denitrification. In Chapter 3, I investigated whether stormwater best management practices (BMPs) integrated into restored and degraded urban stream networks can influence watershed N loads. I hypothesized that hydrologically connected floodplains and stormwater BMPs are “hot spots” for N retention through denitrification because they have ample organic carbon, low dissolved oxygen levels, and high residence time. I used reach-scale nitrogen mass balances, in-stream tracer injection studies, and 15N in situ denitrification to measure N retention in stormwater BMPs and their larger stream networks. There were high rates of in situ denitrification in both stormwater BMPs and floodplain features. Hydrologically connected floodplains can be important “hot spots” for N retention at a watershed and stream network scale because these areas likely receive perennial flow through the groundwater-surface water interface during both baseflow and storm events, while BMPs only receive intermittent flow associated with storm events. In Chapter 4, I conducted a literature review of N retention within hydrologically reconnected streams and floodplains. I reviewed 79 stream and floodplain restoration empirical studies from North America, Europe, and Asia and found that methods for measuring N retention varied considerably. I found many diverse strategies for promoting the ecosystem function of N retention in urban and agricultural watersheds

    Urban Evolution: The Role of Water

    Get PDF
    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth’s population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of “urban evolution” was proposed. It allows urban planning, management, and restoration to move beyond reactive management to predictive management based on past observations of consistent patterns. Here, we define and review a glossary of core concepts for studying urban evolution, which includes the mechanisms of urban selective pressure and urban adaptation. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is thesequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. The role of water is vital to driving urban evolution as demonstrated by historical changes in drainage, sewage flows, hydrologic pulses, and long-term chemistry. In the current paper, we show how hydrologic traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations over time. We explore multiple empirical examples including evolving: (1) urban drainage from stream burial to stormwater management; (2) sewage flows and water quality in response to wastewater treatment; (3) amplification of hydrologic pulses due to the interaction between urbanization and climate variability; and (4) salinization and alkalinization of fresh water due to human inputs and accelerated weathering. Finally, we propose a new conceptual model for the evolution of urban waters from the Industrial Revolution to the present day based on empirical trends and historical information. Ultimately, we propose that water itself is a critical driver of urban evolution that forces urban adaptation, which transforms the structure, function, and services of urban landscapes, waterways, and civilizations over time

    Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

    Get PDF
    Deep excavation of soil has been conducted at the 100-C-7 and 100-C-7:1 waste sites within the 100-BC Operable Unit at the Department of Energy (DOE) Hanford Site to remove hexavalent chromium (Cr(VI)) contamination with the excavations reaching to near the water table. Soil sampling showed that Cr(VI) contamination was still present at the bottom of the 100-C-7:1 excavation. In addition, Cr(VI) concentrations in a downgradient monitoring well have shown a transient spike of increased Cr(VI) concentration following initiation of excavation. Potentially, the increased Cr(VI) concentrations in the downgradient monitoring well are due to Cr(VI) from the excavation site. However, data were needed to evaluate this possibility and to quantify the overall impact of the 100-C-7:1 excavation site on groundwater. Data collected from a network of aquifer tubes installed across the floor of the 100-C-7:1 excavation and from temporary wells installed at the bottom of the entrance ramp to the excavation were used to evaluate Cr(VI) releases into the aquifer and to estimate local-scale hydraulic properties and groundwater flow velocity

    Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California

    Get PDF
    A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions

    A comparison of diagnostic tests for lactose malabsorption - which one is the best?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perceived milk intolerance is a common complaint, and tests for lactose malabsorption (LM) are unreliable. This study assesses the agreement between diagnostic tests for LM and describes the diagnostic properties of the tests.</p> <p>Methods</p> <p>Patients above 18 years of age with suspected LM were included. After oral intake of 25 g lactose, a combined test with measurement of serum glucose (s-glucose) and hydrogen (H2) and methane (CH4) in expired air was performed and symptoms were recorded. In patients with discrepancies between the results, the combined test was repeated and a gene test for lactose non-persistence was added. The diagnosis of LM was based on an evaluation of all tests. The following tests were compared: Increase in H2, CH4, H2+CH4 and H2+CH4x2 in expired air, increase in s-glucose, and symptoms. The agreement was calculated and the diagnostic properties described.</p> <p>Results</p> <p>Sixty patients were included, seven (12%) had LM. The agreement (kappa-values) between the methods varied from 0.25 to 0.91. The best test was the lactose breath test with measurement of the increase in H2 + CH4x2 in expired air. With a cut-off level < 18 ppm, the area under the ROC-curve was 0.967 and sensitivity was 100%. This shows that measurement of CH4 in addition to H2 improves the diagnostic properties of the breath test.</p> <p>Conclusion</p> <p>The agreement between commonly used methods for the diagnosis of LM was unsatisfactory. A lactose breath test with measurement of H2 + CH4x2 in expired air had the best diagnostic properties.</p

    The effect of corticosteroid versus platelet-rich plasma injection therapies for the management of lateral epicondylitis : a systematic review

    Get PDF
    Introduction: Lateral epicondylitis is a common musculoskeletal disorder of the upper limb. Corticosteroid injection has been widely used as a major mode of treatment. However, better understanding of the pathophysiology of the disease led to a major change in treating the disease, with new options including platelet-rich plasma (PRP) are currently used. Objectives/research aim: To systematically evaluate the effect of corticosteroid versus PRP injections for the treatment of LE. Hypothesis: PRP injections provide longer-term therapeutic effect and less rate of complications compared to corticosteroid injection. Level of evidence: Level 2 evidence (4 included studies are of level 1 evidence, 1 study of level 2 evidence). Design: Systematic Review (according to PRISMA guidelines). Methods: Eleven databases used to search for relevant primary studies comparing the effects of corticosteroid and PRP injections for the treatment of LE. Quality appraisal of studies performed using Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0, CASP Randomised Controlled Trial Checklist, and SIGN Methodology Checklist 2. Results: 732 papers were identified. Five randomised controlled trials (250 Patients) met the inclusion criteria. Clinical findings: Corticosteroid injections provided rapid symptomatic improvement with maximum effect at 6/8/8 weeks before symptoms recurrence, whereas PRP showed slower ongoing improvements up to 24/52/104 weeks(3 studies). Corticosteroid showed more rapid symptomatic improvement of symptoms compared to PRP up to the study end-point of 3 months (1 study). Comparable therapeutic effects of corticosteroid and PRP were observed at 6 weeks (1 study). Ultrasonographic Findings: (1) Doppler activity decreased more significantly in patients who received corticosteroid compared to PRP. (2) Reduced tendon thickness and more patients with cortical erosion noted in corticosteroid group whereas increased tendon thickness and less number of patients with common extensor tendon tears noted in PRP group. (3) Fewer patients reported Probe-induced tenderness and oedema in the common extensor tendon in both corticosteroid and PRP groups (2 studies). Conclusion: Corticosteroid injections provide rapid therapeutic effect in the short-term with recurrence of symptoms afterwards, compared to the relatively slower but longer-term effect of platelet-rich plasma

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Cognitive ability across the life course and cortisol levels in older age

    Get PDF
    Elevated cortisol levels have been hypothesised to contribute to cognitive ageing, but study findings are inconsistent. In the present study, we examined the association between salivary cortisol in older age and cognitive ability across the life course. We used data from 370 members of the 36-Day Sample of the Scottish Mental Survey 1947, who underwent cognitive testing at age 11, and were then followed up at around age 78, completing further cognitive tests and providing diurnal salivary cortisol samples. We hypothesised that higher cortisol levels would be associated with lower cognitive ability in older age and greater cognitive decline from childhood to older age, but also lower childhood cognitive ability. Few of the tested associations were significant, and of those that were, most suggested a positive relationship between cortisol and cognitive ability. Only one cognitive measure showed any sign of cortisol-related impairment. However, after correcting for multiple comparisons, no results remained significant. These findings suggest that cortisol may not play an important role in cognitive ageing across the life course
    • 

    corecore