66 research outputs found

    3-(2H-1,3-Benzodioxol-5-ylmeth­yl)-2-(2-meth­oxy­phen­yl)-1,3-thia­zolidin-4-one

    Get PDF
    The title mol­ecule, C18H17NO4S, features a 1,3-thia­zolidine ring that is twisted about the S—C(methyl­ene) bond. With reference to this ring, the 1,3-benzodioxole and benzene rings lie to either side and form dihedral angles of 69.72 (16) and 83.60 (14)°, respectively, with the central ring. Significant twisting in the mol­ecule is confirmed by the dihedral angle of 79.91 (13)° formed between the outer rings. Linear supra­molecular chains along the a-axis direction mediated by C—H⋯O inter­actions feature in the crystal packing

    4-(Pyrimidin-2-yl)-1-thia-4-aza­spiro­[4.5]decan-3-one

    Get PDF
    The title compound, C12H15N3OS, features an envelope conformation for the 1,3-thia­zolidin-4-one ring with the S atom as the flap atom. The pyrimidine ring is almost orthogonal to the 1,3-thia­zolidin-4-one ring as indicated by the N—C—C—N torsion angle of −111.96 (18)°. Supra­molecular dimers are formed in the crystal structure through the agency of C—H⋯O contacts occurring between centrosymmetrically related mol­ecules. These are linked into supra­molecular tapes along [100] via C—H⋯S contacts

    (E)-1-(2,4-Dinitro­phen­yl)-2-pentyl­idenehydrazine

    Get PDF
    The title compound, C11H14N4O4, is essentially planar with an r.m.s. deviation for the 19 non-H atoms of 0.152 Å. The conformation about the C=N bond is E, and the mol­ecule has a U-shape as the butyl group folds over towards the aromatic system. An intra­molecular C—H⋯N inter­action occurs. The crystal packing is dominated by N—H⋯O hydrogen bonding and C—H⋯O contacts, leading to twisted zigzag supra­molecular chains along the c direction. The crystal packing brings two nitro O atoms into an unusually close proximity of 2.686 (4) Å. While the nature of this inter­action is not obvious, there are several precendents for such short nitro–nitro O⋯O contacts of less than 2.70 Å in the crystallographic literature

    A new era for science-industry research collaboration – a view towards the future

    Get PDF
    Direct engagement of the fishing industry in the provision and co-creation of knowledge and data for research and management is increasingly prevalent. In both the North Atlantic and North Pacific, enhanced and targeted engagement is evident. More is needed. Science-Industry collaborative approaches to developing questions, collecting data, interpreting data, and sharing knowledge create opportunities for information transfer and improved understanding of ecosystem interactions, stock dynamics, economic incentives, and response to management. These collaborations require clear communication and awareness of objectives and outcomes. These initiatives also require careful attention to conditions and interactions that foster respect, trust, and communication. Respect is critical and entails acknowledging the respective skills and expertise of both scientists and fishers. Trust is needed to build confidence in the information developed and its use. Communication is essential to maintain relationships and leverage shared insights. To assess current trends and future opportunities related to this type of engagement, we convened a networking session of research scientists, industry scientists, industry leaders, and fishers at the Annual Science Meeting of the International Council for the Exploration of the Sea (ICES) to address the following questions: (1) What are scientific needs that could be addressed with industry-collected data or knowledge? And (2) How can science-industry collaboration be made sustainable? Here we identify opportunities and acknowledge challenges, outline necessary conditions for respectful and sustainable collaborative research, and highlight ways to promote stakeholder involvement in developing science. We address industry concerns and solicit industry advice. We also address challenges to scientists in ensuring standards for scientific data, conflict of interest, and applying information to advise management. The discussions in this session and subsequent correspondence have led to a set of guidelines and best practices that provide a framework to advance further collaboration between industry and research science. We identify opportunities for directed engagement. We also detail potential approaches to clarify expectations and develop avenues for iterative communication and engagement to sustain collaborative efforts over time. The intent is to improve and expand data streams and contextual understanding of ecosystem processes, stock assessment, and socio-economic dynamics to the benefits of science and industry alike

    Baltic cod recruitment – the impact of climate variability on key processes

    Get PDF
    Large-scale climatic conditions prevailing over the central Baltic Sea resulted in declining salinity and oxygen concentrations in spawning areas of the eastern Baltic cod stock. These changes in hydrography reduced the reproductive success and, combined with high fishing pressure, caused a decline of the stock to the lowest level on record in the early 1990s. The present study aims at disentangling the interactions between reproductive effort and hydrographic forcing leading to variable recruitment. Based on identified key processes, stock dynamics is explained using updated environmental and life stage-specific abundance and production time-series. Declining salinities and oxygen concentrations caused high egg mortalities and indirectly increased egg predation by clupeid fish. Low recruitment, despite enhanced hydrographic conditions for egg survival in the mid-1990s, was due to food limitation for larvae, caused by the decline in the abundance of the copepod Pseudocalanus sp. The case of the eastern Baltic cod stock exemplifies the multitude effects climatic variability may have on a fish stock and underscores the importance of knowledge of these processes for understanding stock dynamics

    Genome architecture enables local adaptation of Atlantic cod despite high connectivity

    Get PDF
    Adaptation to local conditions is a fundamental process in evolution; however, mechanisms maintaining local adaptation despite high gene flow are still poorly understood. Marine ecosystems provide a wide array of diverse habitats that frequently promote ecological adaptation even in species characterized by strong levels of gene flow. As one example, populations of the marine fish Atlantic cod (Gadus morhua) are highly connected due to immense dispersal capabilities but nevertheless show local adaptation in several key traits. By combining population genomic analyses based on 12K single nucleotide polymorphisms with larval dispersal patterns inferred using a biophysical ocean model, we show that Atlantic cod individuals residing in sheltered estuarine habitats of Scandinavian fjords mainly belong to offshore oceanic populations with considerable connectivity between these diverse ecosystems. Nevertheless, we also find evidence for discrete fjord populations that are genetically differentiated from offshore populations, indicative of local adaptation, the degree of which appears to be influenced by connectivity. Analyses of the genomic architecture reveal a significant overrepresentation of a large ~5 Mb chromosomal rearrangement in fjord cod, previously proposed to comprise genes critical for the survival at low salinities. This suggests that despite considerable connectivity with offshore populations, local adaptation to fjord environments may be enabled by suppression of recombination in the rearranged region. Our study provides new insights into the potential of local adaptation in high gene flow species within fine geographical scales and highlights the importance of genome architecture in analyses of ecological adaptation

    The Baltic Health Index (BHI) : Assessing the social–ecological status of the Baltic Sea

    Get PDF
    1. Improving the health of coastal and open sea marine ecosystems represents a substantial challenge for sustainable marine resource management, since it requires balancing human benefits and impacts on the ocean. This challenge is often exacerbated by incomplete knowledge and lack of tools that measure ocean and coastal ecosystem health in a way that allows consistent monitoring of progress towards predefined management targets. The lack of such tools often limits capabilities to enact and enforce effective governance. 2. We introduce the Baltic Health Index (BHI) as a transparent, collaborative and repeatable assessment tool. The Index complements existing, more ecological-oriented, approaches by including a human dimension on the status of the Baltic Sea, an ecosystem impacted by multiple anthropogenic pressures and governed by a multitude of comprehensive national and international policies. Using a large amount of social–ecological data available, we assessed the health of the Baltic Sea for nine goals that represent the status towards set targets, for example, clean waters, biodiversity, food provision, natural products extraction and tourism. 3. Our results indicate that the overall health of the Baltic Sea is suboptimal (a score of 76 out of 100), and a substantial effort is required to reach the management objectives and associated targets. Subregionally, the lowest BHI scores were measured for carbon storage, contaminants and lasting special places (i.e. marine protected areas), albeit with large spatial variation. 4. Overall, the likely future status of all goals in the BHI averaged for the entire Baltic Sea is better than the present status, indicating a positive trend towards a healthier Baltic Sea. However, in some Baltic Sea basins, the trend for specific goals was decreasing, highlighting locations and issues that should be the focus of management priorities. 5. The BHI outcomes can be used to identify both pan-Baltic and subregional scale management priorities and to illustrate the interconnectedness between goals linked by cumulative pressures. Hence, the information provided by the BHI tool and its further development will contribute towards the fulfilment of the UN Agenda 2030 and its Sustainability Development Goals
    corecore