218 research outputs found

    Algebraic Model for scattering in three-s-cluster systems. I. Theoretical Background

    Full text link
    A framework to calculate two-particle matrix elements for fully antisymmetrized three-cluster configurations is presented. The theory is developed for a scattering situation described in terms of the Algebraic Model. This means that the nuclear many-particle state and its asymptotic behaviour are expanded in terms of oscillator states of the intra-cluster coordinates. The Generating Function technique is used to optimize the calculation of matrix elements. In order to derive the dynamical equations, a multichannel version of the Algebraic Model is presented.Comment: 20 pages, 1 postscript figure, submitted to Phys. Rev.

    A netron halo in 8He

    Full text link
    The structure of 8^8He is investigated within a three-cluster microscopic model. The three-cluster configuration α+2n+2n\alpha+^2n+^2n was used to describe the properties of the ground state of the nucleus. The obtained results evidently indicate the existence of a neutron halo in 8^8He.Comment: 14 pages, 6 postscript figures, submitted to Phys. Atom. Nuc

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Исследования ледового режима на акватории Хатангского залива в море Лаптевых

    Get PDF
    The study was carried out to reveal characteristics of the ice regime of poorly explored water area of the Khatanga Bay in the South-Western part of the Laptev Sea. Actuality of the research is due to the high potential of hydrocarbon reserves in the license area «Khatangsky» of the PAO «NK «Rosneft Currently available methods of monitoring ice cover and hydrometeorological conditions throughout the year were used. The main features of the hydrological regime of the region in the ice-free period, reflected in the spatial distribution of thermohaline characteristics and sea level fluctuations, are shown. The area under investigation has specific features of the conditions for the formation of ice cover: the entire area is covered with the fast ice; the winter fresh water infl w from Khatanga and Anabar rivers results in the desalination of sea water, and this promotes formation of ice cover, which differs in crystal structure and texture from both fresh and sea ices. These factors do influence on the mechanical properties of ice, including its strength. It was found that the average and maximum values of strength of the smooth and deformed ice of the Khatanga Gulf are approximately twice as high as the similar values of the sea ice strength in the southern part of the Laptev Sea. The basic features of the spatial distribution of different types of deformations of the ice cover such as lines of ice hummocks, zones of homogeneous ice hummocking, and stamukhas had been determined.Цель исследований – выявить особенности ледового режима малоизученной акватории Хатангского залива в море Лаптевых. На основе круглогодичных исследований на стационаре «Хастыр» и весенних исследований с использованием вертолёта обнаружены новые особенности формирования ледяного покрова, связанные с притоком пресных вод и большого количества примесей, которые приводят к повышенной прочности льда. Установлено пространственное распределение различных видов деформированного льда

    Tumor-targeted delivery of biologically active TRAIL protein

    Get PDF
    The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent inducer of tumor cell apoptosis, but concerns of considerable liver toxicity limit its uses in human cancer therapy. Here, we show that i.v. injected Escherichia coli DH5α (E. coli DH5α) specifically replicates in solid tumors and metastases in live animals. E. coli DH5α does not enter tumor cells and suits for being the vector for soluble TRAIL (sTRAIL), which induces apoptosis by activating cell-surface death receptors. With the high ‘tumor-targeting' nature, we demonstrate that intratumoral (i.t.) and intravenous injection of sTRAIL-expressing E. coli DH5α results in the tumor-targeted release of biologically active molecules, which leads to a dramatic reduction in the tumor growth rate and the prolonged survival of tumor-bearing mice. TRAIL delivery by E. coli DH5α did not cause any detectable toxicity to any organs, suggesting that E. coli DH5α-delivered sTRAIL protein therapy may provide a feasible and effective form of treatment for solid tumors

    Measurement of the cross-section for b-jets produced in association with a Z boson at root s=7 TeV with the ATLAS detector ATLAS Collaboration

    Get PDF
    A measurement is presented of the inclusive cross-section for b-jet production in association with a Z boson in pp collisions at a centre-of-mass energy of root s = 7 TeV. The analysis uses the data sample collected by the ATLAS experiment in 2010, corresponding to an integrated luminosity of approximately 36 pb(-1). The event selection requires a Z boson decaying into high P-T electrons or muons, and at least one b-jet, identified by its displaced vertex, with transverse momentum p(T) > 25 GeV and rapidity vertical bar y vertical bar < 2.1. After subtraction of background processes, the yield is extracted from the vertex mass distribution of the candidate b-jets. The ratio of this cross-section to the inclusive Z cross-section (the average number of b-jets per Z event) is also measured. Both results are found to be in good agreement with perturbative QCD predictions at next-to-leading order

    Ionic Conductivity in Multiphase Li₂O-7GeO₂ Compounds

    No full text
    Crystallization of Li₂O-7GeO₂ glass was carried out on heating, simultaneously differential scanning calorimetry and electric properties were studied. Morphology of the phase states obtained at glass devitrification was examined by atomic force microscopy. It was shown that amorphous phase of Li₂O-7GeO₂ was crystallized in stages through the intermediate state with increased conductivity σ . In the intermediate state the sample volume was occupied by nanometer-sized nuclei with ordered structure surrounded by internuclear amorphous medium. Complete glass crystallization occurred through transformation of nanometer-sized nuclei into micrometer-sized crystallites and was accompanied by a sharp and irreversible decrease of conductivity. Atomic force microscopy of the samples heat-treated in different ways showed that Li₂O-7GeO₂ glass crystallization was suppressed near the surface and mainly proceeded within the sample bulk. Charge transfer in amorphous, nanocrystalline intermediate and polycrystalline phases of Li₂O-7GeO₂ was associated with motion of the weakly bound Li ions

    Ionic Conductivity in Multiphase Li 2

    No full text
    Crystallization of Li₂O-7GeO₂ glass was carried out on heating, simultaneously differential scanning calorimetry and electric properties were studied. Morphology of the phase states obtained at glass devitrification was examined by atomic force microscopy. It was shown that amorphous phase of Li₂O-7GeO₂ was crystallized in stages through the intermediate state with increased conductivity σ . In the intermediate state the sample volume was occupied by nanometer-sized nuclei with ordered structure surrounded by internuclear amorphous medium. Complete glass crystallization occurred through transformation of nanometer-sized nuclei into micrometer-sized crystallites and was accompanied by a sharp and irreversible decrease of conductivity. Atomic force microscopy of the samples heat-treated in different ways showed that Li₂O-7GeO₂ glass crystallization was suppressed near the surface and mainly proceeded within the sample bulk. Charge transfer in amorphous, nanocrystalline intermediate and polycrystalline phases of Li₂O-7GeO₂ was associated with motion of the weakly bound Li ions
    corecore