55 research outputs found

    A dusty proto-cluster surrounding the binary galaxy HerBS-70 at z = 2.3

    Get PDF
    We report on deep SCUBA-2 observations at 850 μm and NOEMA spectroscopic measurements at 2 mm of the environment surrounding the luminous, massive (M* ≈ 2 × 1011 M⊙) Herschel-selected source HerBS-70. This source was revealed by previous NOEMA observations to be a binary system of dusty star-forming galaxies at z = 2.3, with the East component (HerBS-70E) hosting an Active Galactic Nucleus (AGN). The SCUBA-2 observations detected, in addition to the binary system, twenty-one sources at >3.5σ over an area of ∼25 square comoving Mpc with a sensitivity of 1σ850 = 0.75 mJy. The surface density of continuum sources around HerBS-70 is three times higher than for field galaxies. The NOEMA spectroscopic measurements confirm the protocluster membership of three of the nine brightest sources through their CO(4–3) line emission, yielding a volume density 36 times higher than for field galaxies. All five confirmed sub-mm galaxies in the HerBS-70 system have relatively short gas depletion times (80 − 500 Myr), indicating the onset of quenching for this protocluster core due to the depletion of gas. The dark matter halo mass of the HerBS-70 system is estimated around 5 × 1013 M⊙, with a projected current-day mass of 1015 M⊙, similar to the local Virgo and Coma clusters. These observations support the claim that DSFGs, in particular the ones with observed multiplicity, can trace cosmic overdensities

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    The polarized image of a synchrotron-emitting ring of gas orbiting a black hole

    Get PDF
    High Energy Astrophysic

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    InstrumentationHigh Energy Astrophysic

    The variability of the black hole image in M87 at the dynamical timescale

    Get PDF
    The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5–61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of ∼3°–5°. The only triangles that exhibit substantially higher variability (∼90°–180°) are the ones with baselines that cross the visibility amplitude minima on the u–v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.https://iopscience.iop.org/article/10.3847/1538-4357/ac332e/pdfPublished versio

    Event Horizon Telescope observations of the jet launching and collimation in Centaurus A

    Get PDF
    InstrumentationLarge scale structure and cosmolog

    First sagittarius A* Event Horizon Telescope results. VI. Testing the black hole metric

    Get PDF
    Galaxie

    Resolving the inner parsec of the blazar J1924-2914 with the event horizon telescope

    Get PDF
    Galaxie

    A universal power-law prescription for variability from synthetic images of black hole accretion flows

    Get PDF
    Instrumentatio

    First sagittarius A* Event Horizon Telescope results. IV. Variability, morphology, and black hole mass

    Get PDF
    Galaxie
    corecore