145 research outputs found

    On the Role of Nuclear Motion in Singlet Exciton Fission: The Case of Single-Crystal Pentacene

    Get PDF
    Singlet exciton fission (SF), the formation of two triplet excitons from one singlet exciton, involves electronic, nuclear, and spin degrees of freedom as well as their couplings. Despite almost 60 years of research on this process, a complete microscopic understanding is still missing. One important open question concerns the role of nuclear motion in SF. In this perspective, recent results on the exciton dynamics are related to the structural dynamics of single-crystal pentacene and how they provide insights into that open question is shown. To probe the electronic dynamics, orbital-resolved measurements of the electronic structure are carried out using time- and angle-resolved photoemission spectroscopy. With femtosecond electron diffraction and with ab initio computations, the complementary nuclear dynamics is tracked. The results from both techniques are summarized, and how they relate to each other is discussed. Then, remaining open questions are outlined and potential routes are identified to tackle them, hopefully guiding future studies

    Influence of Nanoparticles Deposition Conditions on the Microarc Coatings Properties

    Get PDF
    The surface charge of biomaterials significantly contributes to such processes as protein adsorption or biofilm formation and consequently osseointegration bone tissue and implant. There are a set of methods to create a charge on dielectric biomaterials surface. One of the perspective methods of materials electrization is an introduction of the nanoparticles with appropriate biomedical properties into biomaterial. Boehmite AlO(OH) nanoparticles is perspective for the biomaterials surface modification due to its high surface area and positive charge. In this work, the investigations of microarc calcium phosphate biocoatings modified by boehmite nanoparticles on the Ti substrate were presented. A variation of the nanoparticles deposition parameters allowed producing calcium phosphate coatings with different morphology and boehmite nanoparticles size distribution. The investigations of the modified coatings by the transmission and scanning electron microscopy methods are presented in the work

    Yours ever (well, maybe): Studies and signposts in letter writing

    Get PDF
    Electronic mail and other digital communications technologies seemingly threaten to end the era of handwritten and typed letters, now affectionately seen as part of snail mail. In this essay, I analyze a group of popular and scholarly studies about letter writing-including examples of pundits critiquing the use of e-mail, etiquette manuals advising why the handwritten letter still possesses value, historians and literary scholars studying the role of letters in the past and what it tells us about our present attitudes about digital communications technologies, and futurists predicting how we will function as personal archivists maintaining every document including e-mail. These are useful guideposts for archivists, providing both a sense of the present and the past in the role, value and nature of letters and their successors. They also provide insights into how such documents should be studied, expanding our gaze beyond the particular letters, to the tools used to create them and the traditions dictating their form and function. We also can discern a role for archivists, both for contributing to the literature about documents and in using these studies and commentaries, suggesting not a new disciplinary realm but opportunities for new interdisciplinary work. Examining a documentary form makes us more sensitive to both the innovations and traditions as it shifts from the analog to the digital; we can learn not to be caught up in hysteria or nostalgia about one form over another and archivists can learn about what they might expect in their labors to document society and its institutions. At one time, paper was part of an innovative technology, with roles very similar to the Internet and e-mail today. It may be that the shifts are far less revolutionary than is often assumed. Reading such works also suggests, finally, that archivists ought to rethink how they view their own knowledge and how it is constructed and used. © 2010 Springer Science+Business Media B.V

    The modular network structure of the mutational landscape of Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) is associated with the sequential accumulation of acquired genetic alterations. Although at diagnosis cytogenetic alterations are frequent in AML, roughly 50% of patients present an apparently normal karyotype (NK), leading to a highly heterogeneous prognosis. Due to this significant heterogeneity, it has been suggested that different molecular mechanisms may trigger the disease with diverse prognostic implications. We performed whole-exome sequencing (WES) of tumor-normal matched samples of de novo AML-NK patients lacking mutations in NPM1, CEBPA or FLT3-ITD to identify new gene mutations with potential prognostic and therapeutic relevance to patients with AML. Novel candidate-genes, together with others previously described, were targeted resequenced in an independent cohort of 100 de novo AML patients classified in the cytogenetic intermediate-risk (IR) category. A mean of 4.89 mutations per sample were detected in 73 genes, 35 of which were mutated in more than one patient. After a network enrichment analysis, we defined a single in silico model and established a set of seed-genes that may trigger leukemogenesis in patients with normal karyotype. The high heterogeneity of gene mutations observed in AML patients suggested that a specific alteration could not be as essential as the interaction of deregulated pathways

    Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries

    Full text link
    Downsizing well-established materials to the nanoscale is a key route to novel functionalities, in particular if different functionalities are merged in hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are particularly promising for electrochemical energy storage since they combine benefits of nanosize effects, enhanced electrical conductivity and integrity of bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT) encapsulating high-capacity (here: conversion and alloying) electrode materials have a high potential for use in anode materials for lithium-ion batteries (LIB). There are two essential characteristics of filled CNT relevant for application in electrochemical energy storage: (1) rigid hollow cavities of the CNT provide upper limits for nanoparticles in their inner cavities which are both separated from the fillings of other CNT and protected against degradation. In particular, the CNT shells resist strong volume changes of encapsulates in response to electrochemical cycling, which in conventional conversion and alloying materials hinders application in energy storage devices. (2) Carbon mantles ensure electrical contact to the active material as they are unaffected by potential cracks of the encapsulate and form a stable conductive network in the electrode compound. Our studies confirm that encapsulates are electrochemically active and can achieve full theoretical reversible capacity. The results imply that encapsulating nanostructures inside CNT can provide a route to new high-performance nanocomposite anode materials for LIB.Comment: Invite

    Landscape science: a Russian geographical tradition

    Get PDF
    The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability

    White matter developmental trajectories associated with persistence and recovery of childhood stuttering

    Full text link
    Stuttering affects the fundamental human ability of fluent speech production, and can have a significant negative impact on an individual’s psychosocial development. While the disorder affects about 5% of all preschool children, approximately 80% of them recover naturally within a few years of stuttering onset. The pathophysiology and neuroanatomical development trajectories associated with persistence and recovery of stuttering are still largely unknown. Here, the first mixed longitudinal diffusion tensor imaging (DTI) study of childhood stuttering has been reported. A total of 195 high quality DTI scans from 35 children who stutter (CWS) and 43 controls between 3 and 12 years of age were acquired, with an average of three scans per child, each collected approximately a year apart. Fractional anisotropy (FA), a measure reflecting white matter structural coherence, was analyzed voxelâ wise to examine group and ageâ related differences using a linear mixedâ effects (LME) model. Results showed that CWS exhibited decreased FA relative to controls in the left arcuate fasciculus, underlying the inferior parietal and posterior temporal areas, and the mid body of corpus callosum. Further, white matter developmental trajectories reflecting growth rate of these tract regions differentiated children with persistent stuttering from those who recovered from stuttering. Specifically, a reduction in FA growth rate (i.e., slower FA growth with age) in persistent children relative to fluent controls in the left arcuate fasciculus and corpus callosum was found, which was not evident in recovered children. These findings provide first glimpses into the possible neural mechanisms of onset, persistence, and recovery of childhood stuttering. Hum Brain Mapp 38:3345â 3359, 2017. © 2017 Wiley Periodicals, Inc.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137362/1/hbm23590.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137362/2/hbm23590_am.pd

    Genome Economization in the Endosymbiont of the Wood Roach Cryptocercus punctulatus Due to Drastic Loss of Amino Acid Synthesis Capabilities

    Get PDF
    Cockroaches (Blattaria: Dictyoptera) harbor the endosymbiont Blattabacterium sp. in their abdominal fat body. This endosymbiont is involved in nitrogen recycling and amino acid provision to its host. In this study, the genome of Blattabacterium sp. of Cryptocercus punctulatus (BCpu) was sequenced and compared with those of the symbionts of Blattella germanica and Periplaneta americana, BBge and BPam, respectively. The BCpu genome consists of a chromosome of 605.7 kb and a plasmid of 3.8 kb and is therefore approximately 31 kb smaller than the other two aforementioned genomes. The size reduction is due to the loss of 55 genes, 23 of which belong to biosynthetic pathways for amino acids. The pathways for the production of tryptophan, leucine, isoleucine/threonine/valine, methionine, and cysteine have been completely lost. Additionally, the genes for the enzymes catalyzing the last steps of arginine and lysine biosynthesis, argH and lysA, were found to be missing and pseudogenized, respectively. These gene losses render BCpu auxotrophic for nine amino acids more than those corresponding to BBge and BPam. BCpu has also lost capacities for sulfate reduction, production of heme groups, as well as genes for several other unlinked metabolic processes, and genes present in BBge and BPam in duplicates. Amino acids and cofactors that are not synthesized by BCpu are either produced in abundance by hindgut microbiota or are provisioned via a copious diet of dampwood colonized by putrefying microbiota, supplying host and Blattabacterium symbiont with the necessary nutrients and thus permitting genome economization of BCpu
    corecore