535 research outputs found

    Magneto-optical properties of Co|Pt multilayer systems

    Full text link
    We are reporting, for the first time in the literature, theoretical Kerr spectra of Co|Pt multilayer systems as obtained on a first principles basis including multiple reflections and interferences from all the boundaries in-between the layers.Comment: 4 pages (LaTeX), 1 (a,b) figures (Encapsulated PostScript), J. Appl. Physics, in pres

    Layer-resolved optical conductivity of Co|Pt multilayers

    Full text link
    The complex optical conductivity tensor is calculated for the Co|Pt systems by applying a contour integration technique within the framework of the spin-polarized relativistic screened Korringa-Kohn-Rostoker method. It is shown that the optical conductivity of the Co|Pt multilayer systems is dominated by contributions arising from the Pt cap and/or substrate layers.Comment: 7 pages (LaTeX), 2 (a,b) figures (Encapsulated PostScript), J. Magn. Magn. Materials, in pres

    Orbital dependent electron tunneling within the atom superposition approach: Theory and application to W(110)

    Get PDF
    We introduce an orbital dependent electron tunneling model and implement it within the atom superposition approach for simulating scanning tunneling microscopy (STM) and spectroscopy (STS). Applying our method, we analyze the convergence and the orbital contributions to the tunneling current and the corrugation of constant current STM images above the W(110) surface. In accordance with a previous study [Heinze et al., Phys. Rev. B 58, 16432 (1998)], we find atomic contrast reversal depending on the bias voltage. Additionally, we analyze this effect depending on the tip-sample distance using different tip models, and find two qualitatively different behaviors based on the tip orbital composition. As an explanation, we highlight the role of the real space shape of the orbitals involved in the tunneling. STM images calculated by our model agree well with Tersoff-Hamann and Bardeen results. The computational efficiency of our model is remarkable as the k-point samplings of the surface and tip Brillouin zones do not affect the computation time, in contrast to the Bardeen method.Comment: 28 pages manuscript, 7 figures, 1 tabl

    Simulation of spin-polarized scanning tunneling microscopy on complex magnetic surfaces: Case of a Cr monolayer on Ag(111)

    Get PDF
    We propose an atom-superposition-based method for simulating spin-polarized scanning tunneling microscopy (SP-STM) from first principles. Our approach provides bias dependent STM images in high spatial resolution, with the capability of using either constant current or constant height modes of STM. In addition, topographic and magnetic contributions can clearly be distinguished, which are directly comparable to results of SP-STM experiments in the differential magnetic mode. Advantages of the proposed method are that it is computationally cheap, it is easy to parallelize, and it can employ the results of any ab initio electronic structure code. Its capabilities are illustrated for the prototype frustrated hexagonal antiferromagnetic system, Cr monolayer on Ag(111) in a noncollinear magnetic 120120^{\circ} N\'eel state. We show evidence that the magnetic contrast is sensitive to the tip electronic structure, and this contrast can be reversed depending on the bias voltage.Comment: 28 pages manuscript, 1 table, 5 figure
    corecore