523 research outputs found

    Neural Modeling and Imaging of the Cortical Interactions Underlying Syllable Production

    Full text link
    This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.National Institute on Deafness and Other Communication Disorders (R01 DC02852, RO1 DC01925

    Exploring auditory-motor interactions in normal and disordered speech

    Full text link
    Auditory feedback plays an important role in speech motor learning and in the online correction of speech movements. Speakers can detect and correct auditory feedback errors at the segmental and suprasegmental levels during ongoing speech. The frontal brain regions that contribute to these corrective movements have also been shown to be more active during speech in persons who stutter (PWS) compared to fluent speakers. Further, various types of altered auditory feedback can temporarily improve the fluency of PWS, suggesting that atypical auditory-motor interactions during speech may contribute to stuttering disfluencies. To investigate this possibility, we have developed and improved Audapter, a software that enables configurable dynamic perturbation of the spatial and temporal content of the speech auditory signal in real time. Using Audapter, we have measured the compensatory responses of PWS to static and dynamic perturbations of the formant content of auditory feedback and compared these responses with those from matched fluent controls. Our findings indicate deficient utilization of auditory feedback by PWS for short-latency online control of the spatial and temporal parameters of articulation during vowel production and during running speech. These findings provide further evidence that stuttering is associated with aberrant auditory-motor integration during speech.Published versio

    Representation of Sound Categories in Auditory Cortical Maps

    Full text link
    We used functional magnetic resonance imaging (fMRI) to investigate the representation of sound categories in human auditory cortex. Experiment 1 investigated the representation of prototypical and non-prototypical examples of a vowel sound. Listening to prototypical examples of a vowel resulted in less auditory cortical activation than listening to nonprototypical examples. Experiments 2 and 3 investigated the effects of categorization training and discrimination training with novel non-speech sounds on auditory cortical representations. The two training tasks were shown to have opposite effects on the auditory cortical representation of sounds experienced during training: discrimination training led to an increase in the amount of activation caused by the training stimuli, whereas categorization training led to decreased activation. These results indicate that the brain efficiently shifts neural resources away from regions of acoustic space where discrimination between sounds is not behaviorally important (e.g., near the center of a sound category) and toward regions where accurate discrimination is needed. The results also provide a straightforward neural account of learned aspects of categorical perception: sounds from the center of a category are more difficult to discriminate from each other than sounds near category boundaries because they are represented by fewer cells in the auditory cortical areas.National Institute on Deafness and Other Communication Disorders (R01 DC02852

    Behavioral, computational, and neuroimaging studies of acquired apraxia of speech

    Get PDF
    A critical examination of speech motor control depends on an in-depth understanding of network connectivity associated with Brodmann areas 44 and 45 and surrounding cortices. Damage to these areas has been associated with two conditions-the speech motor programming disorder apraxia of speech (AOS) and the linguistic/grammatical disorder of Broca's aphasia. Here we focus on AOS, which is most commonly associated with damage to posterior Broca's area (BA) and adjacent cortex. We provide an overview of our own studies into the nature of AOS, including behavioral and neuroimaging methods, to explore components of the speech motor network that are associated with normal and disordered speech motor programming in AOS. Behavioral, neuroimaging, and computational modeling studies are indicating that AOS is associated with impairment in learning feedforward models and/or implementing feedback mechanisms and with the functional contribution of BA6. While functional connectivity methods are not yet routinely applied to the study of AOS, we highlight the need for focusing on the functional impact of localized lesions throughout the speech network, as well as larger scale comparative studies to distinguish the unique behavioral and neurological signature of AOS. By coupling these methods with neural network models, we have a powerful set of tools to improve our understanding of the neural mechanisms that underlie AOS, and speech production generally

    Deployment hinge

    Get PDF
    A hinge (20) includes two hinge plates (22, 24) and a connecting hinge pin (32). A coil spring (48) supported on a bushing (44) overlies the hinge pin (32), which is free to move along its longitudinal axis (30). A cam follower (42) on the hinge pin (32) engages a cam (32) mounted to one of the hinge plates (22), so that the hinge pin (32) slides longitudinally as the hinge plates (22, 24) pivot relative to each other about the hinge pin (32). As the hinge pin (32) slides longitudinally, it axially compresses or decompresses the spring (48). The cam (32) is oriented such that pivoting of the hinge plates (22, 24) in either direction from an open position compresses the spring (48), providing a restoring force which tends to retain the hinge plates (22, 24) in the open position

    ROI-Based Analysis of Functional Imaging Data

    Full text link
    In this technical report, we present fMRI analysis techniques that test functional hypotheses at the region of interest (ROI) level. An SPM-compatible Matlab toolbox has been developed which allows the creation of subject-specific ROI masks based on anatomical markers and the testing of functional hypotheses on the regional response using multivariate time-series analysis techniques. The combined application of subject-specific ROI definition and region-level functional analysis is shown to appropriately compensate for inter-subject anatomical variability, offering finer localization and increased sensitivity to task-related effects than standard techniques based on whole brain normalization and voxel or cluster-level functional analysis, while providing a more direct link between discrete brain region hypotheses and the statistical analyses used to test them.National Institute of Health (R29 DC02852, ROI DC02852

    Mindboggle: Automated brain labeling with multiple atlases

    Get PDF
    BACKGROUND: To make inferences about brain structures or activity across multiple individuals, one first needs to determine the structural correspondences across their image data. We have recently developed Mindboggle as a fully automated, feature-matching approach to assign anatomical labels to cortical structures and activity in human brain MRI data. Label assignment is based on structural correspondences between labeled atlases and unlabeled image data, where an atlas consists of a set of labels manually assigned to a single brain image. In the present work, we study the influence of using variable numbers of individual atlases to nonlinearly label human brain image data. METHODS: Each brain image voxel of each of 20 human subjects is assigned a label by each of the remaining 19 atlases using Mindboggle. The most common label is selected and is given a confidence rating based on the number of atlases that assigned that label. The automatically assigned labels for each subject brain are compared with the manual labels for that subject (its atlas). Unlike recent approaches that transform subject data to a labeled, probabilistic atlas space (constructed from a database of atlases), Mindboggle labels a subject by each atlas in a database independently. RESULTS: When Mindboggle labels a human subject's brain image with at least four atlases, the resulting label agreement with coregistered manual labels is significantly higher than when only a single atlas is used. Different numbers of atlases provide significantly higher label agreements for individual brain regions. CONCLUSION: Increasing the number of reference brains used to automatically label a human subject brain improves labeling accuracy with respect to manually assigned labels. Mindboggle software can provide confidence measures for labels based on probabilistic assignment of labels and could be applied to large databases of brain images
    • …
    corecore