228 research outputs found
Evaporation of alpha particles from P nucleus
The energy spectra of alpha particles have been measured in coincidence with
the evaporation residues for the decay of the compound nucleus P produced
in the reaction F (96 MeV) + C. The data have been compared with the
predictions of the statistical model code CASCADE. It has been observed that
significant deformation effect in the compound nucleus need to be considered in
order to explain the shape of the evaporated alpha particle energy spectra.Comment: 4 pages, 3 figures, revtex, epsf styl
Genetic variation in histidine rich proteins among Indian Plasmodium falciparum population: possible cause of variable sensitivity of malaria rapid diagnostic tests
BACKGROUND: Rapid diagnostic tests (RDTs) have revolutionized the diagnosis of malaria. Among the various factors affecting RDTs sensitivity is genetic variation of the antigen used. The genetic variation in PfHRP2 and PfHRP3 proteins was studied among the Indian Plasmodium falciparum isolates. METHODS: One hundred and forty isolates of P. falciparum were collected from six geographical regions of India. Target genes encoding PfHRP2 and PfHRP3 antigens were sequenced to study genetic polymorphism. Minimum detection limit giving a positive rapid diagnostic test was also determined. RESULTS: Extensive variations were observed in amino acid repeat types of PfHRP2 and PfHRP3. PfHRP2 exhibited more polymorphism than PfHRP3. Significant relation was observed between type 2 and type 7 repeats and RDT detection rate as higher number of these repeats showed better sensitivity with RDTs. CONCLUSION: The results provide insights into the genetic diversity of Pfhrp2 and Pfhrp3 genes among Indian P. falciparum population and its relation to RDT sensitivity
Dosimetric effect of intra-fractional and inter-fractional target motion in lung cancer radiotherapy techniques
Purpose: The purpose of present study was to experimentally evaluate the dosimetric uncertainties in 3-dimensional conformal radiotherapy (3DCRT), dynamic intensity modulated radiotherapy (D-IMRT), step-shoot (SS-IMRT), and volumetric modulated arc therapy (VMAT) treatment delivery techniques due to intra- and inter-fractional target motion. Methods: A previously treated lung patient was selected for this study and was replanned for 60 Gy in 30 fractions using four techniques (3DCRT, D-IMRT, SS-IMRT, and VMAT). These plans were delivered in a clinical linear accelerator equipped with HexaPOD™ evo RT System. The target dose of static QUASAR phantom was calculated that served as reference dose to the target. The QUASAR respiratory body phantom along with patients breathing wave form and HexaPOD™ evo RT System was used to simulate the intra-fraction and inter-fraction motions. Dose measurements were done by applying the intra-fractional and inter-fractional motions in all the four treatment delivery techniques.Results: The maximum percentage deviation in a single field was -4.3%, 10.4%, and -12.2% for 3DCRT, D-IMRT and SS-IMRT deliveries, respectively. Similarly, the deviation for a single fraction was -1.51%, -1.88%, -2.22%, and -3.03% for 3DCRT, D-IMRT, SS-IMRT and VMAT deliveries, respectively. Conclusion: The impact of inter-fractional and intra-fractional uncertainties calculated as deviation between dynamic and static condition dose was large in some fractions, however average deviation calculated for thirty fractions was well within 0.5% in all the four techniques. Therefore, inter- and intra-fractional uncertainties could be concern in fewer fraction treatments such as stereotactic body radiation therapy, and should be used in conjunction with intra- and inter-fractional motion management techniques
Re-establishing Responsiveness in a Case of Refractory Metastatic Rectal Cancer with a Personalized de novo Combination Regimen
Introduction: Encyclopedic Tumor Analysis (ETA) is multi-analyte, molecular and functional interrogation to identify latent vulnerabilities in solid tumors which can then be targeted in organ- and label-agnostic combination treatment regimens.Case Presentation: We describe here a case of metastatic rectal cancer in a 61-year-old male who was progressed on all prior Standard of Care (SoC) treatment modalities including surgery, chemotherapy and radiotherapy. We addressed disease recurrence via personalized therapy guided by ETA which revealed characteristic molecular heterogeneity in primary and metastatic lesions in terms of single nucleotide variations (SNVs) and gene copy number variations (CNVs). Notably, a novel TBL1XR1 (Exon1) – PIK3CA (Exon 2) gene fusion was identified in the tumor along with gene copy number gains in TERT, IGF-1R, MYC, FGFR1 and EGFR genes.Conclusion: ETA based molecular analysis with synchronous in vitro chemo-sensitivity profiling strategy helped to define de novo combinatorial therapy regimen of targeted and cytotoxic drugs which countered disease progression at each instance and led to the durable regression of primary as well as metastatic lesions
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
Effective Rheology of Bubbles Moving in a Capillary Tube
We calculate the average volumetric flux versus pressure drop of bubbles
moving in a single capillary tube with varying diameter, finding a square-root
relation from mapping the flow equations onto that of a driven overdamped
pendulum. The calculation is based on a derivation of the equation of motion of
a bubble train from considering the capillary forces and the entropy production
associated with the viscous flow. We also calculate the configurational
probability of the positions of the bubbles.Comment: 4 pages, 1 figur
Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV
The inclusive transverse momentum () distributions of primary
charged particles are measured in the pseudo-rapidity range as a
function of event centrality in Pb-Pb collisions at
TeV with ALICE at the LHC. The data are presented in the range
GeV/ for nine centrality intervals from 70-80% to 0-5%.
The Pb-Pb spectra are presented in terms of the nuclear modification factor
using a pp reference spectrum measured at the same collision
energy. We observe that the suppression of high- particles strongly
depends on event centrality. In central collisions (0-5%) the yield is most
suppressed with at -7 GeV/. Above
GeV/, there is a significant rise in the nuclear modification
factor, which reaches for GeV/. In
peripheral collisions (70-80%), the suppression is weaker with almost independently of . The measured nuclear
modification factors are compared to other measurements and model calculations.Comment: 17 pages, 4 captioned figures, 2 tables, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/284
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
- …