79 research outputs found
Perception of Saudi Mothers about Maxillary Midline Diastemas among Children with Mixed Dentition- A Cross-sectional Study
Introduction: Maxillary anterior spacing or midline diastema
is the most frequently seen aesthetic concern among children,
which can be quite challenging for the clinician to manage.
There can be a significant disparity in the aesthetic perception
from person to person and is greatly influenced by their personal
experience and social environment.
Aim: This study investigated the aesthetic perceptions of Saudi
mothers to various Maxillary Midline Diastemas (MMDs) in
mixed dentition.
Materials and Methods: A cross-sectional study using
structured questionnaire was employed for Saudi mothers
chosen by stratified-cluster random sampling technique over
a period of eight months (November 2016 to June 2017). The
questionnaire assessed their perception about various MMDs
using photographs and the source of information about
MMDs. Data were statistical analysed (SPSS version 20)
using the Chi-square test, with the level of significance set at
p-value <0.05.
Results: The sample consisted of 300 Saudi mothers with a
response rate of 86.2%. The maximum mean score was 4.80±0.20
for the MMD photograph showing central incisor tooth discrepancy
which the mothers perceived to be the most unpleasant (81%).
The very unpleasant perception from the mothers’ perception
for group D and B showing ugly duckling stage was (55%) and
thumb sucking habit (33%), respectively. The MMD photograph
showing high frenum attachment was perceived by 51% of the
mothers to be unpleasant and 7% as very unpleasant. Moreover,
on comparison it showed the least mean score of 3.65±0.41.
Conclusion: The perception of Saudi mothers to various types
of MMDs was found to be aesthetically unpleasant. Early
detection of the MMDs by the Saudi mothers and intervention
by the dental specialist can reduce the progression of the
prevailing condition to a severe malocclusion
Knowledge, beliefs, attitude, and practices of E-cigarette use among dental students: A multinational survey
E-cigarette use is a trend worldwide nowadays with mounting evidence on associated morbidities and mortality. Dentists can modify the smoking behaviors of their patients. This study aimed to explore the knowledge, beliefs, attitude, and practice of E-cigarette use among dental students. This multinational, cross-sectional, questionnaire-based study recruited undergraduate dental students from 20 dental schools in 11 countries. The outcome variable was current smoking status (non-smoker, E-cigarette user only, tobacco cigarette smoker only, dual user). The explanatory variables were country of residence, sex, age, marital status, and educational level. Multiple linear regression analysis was performed to explore the explanatory variables associated with E-cigarette smoking. Of the 5697 study participants, 5156 (90.8%) had heard about E-cigarette, and social media was the most reported source of information for 33.2% of the participants. For the 5676 current users of E-cigarette and/or tobacco smoking, 4.5% use E-cigarette, and 4.6% were dual users. There were significant associations between knowledge and country (P< 0.05), educational level (B = 0.12; 95% CI: 0.02, 0.21; P = 0.016) and smoking status (P< 0.05). The country of residence (P< 0.05) and smoking status (P< 0.05) were the only statistically significant factors associated with current smoking status. Similarly, there were statistically significant associations between attitude and country (P< 0.05 for one country only compared to the reference) and history of previous E-cigarette exposure (B = -0.52; 95% CI: -0.91, -0.13; P = 0.009). Also, the practice of E-cigarettes was significantly associated with country (P< 0.05 for two countries only compared to the reference) and gender (B = -0.33; 95% CI: -0.52, -0.13; P = 0.001). The knowledge of dental students about E-cigarette was unsatisfactory, yet their beliefs and attitudes were acceptable. Topics about E-cigarette should be implemented in the dental curriculum.Deanship of Scientific Research, King Saud University, for funding through the Vice Deanship of Scientific Research for Research Chairs. Qatar National Library for the open access funding
Oral health practices and self-reported adverse effects of E-cigarette use among dental students in 11 countries: an online survey
Objectives: E-cigarette use has become popular, particularly among the youth. Its use is associated with harmful general and oral health consequences. This survey aimed to assess self-reported oral hygiene practices, oral and general health events, and changes in physiological functions (including physical status, smell, taste, breathing, appetite, etc.) due to E-cigarette use among dental students. Methods: This online, multicounty survey involved undergraduate dental students from 20 dental schools across 11 different countries. The questionnaire included demographic characteristics, E-cigarette practices, self-reported complaints, and associated physiological changes due to E-cigarette smoking. Data were descriptively presented as frequencies and percentages. A Chi-square test was used to assess the potential associations between the study group and sub-groups with the different factors. Statistical analysis was performed using SPSS at P < 0.05. Results: Most respondents reported regular brushing of their teeth, whereas only 70% used additional oral hygiene aids. Reported frequencies of complaints ranged from as low as 3.3% for tongue inflammation to as high as 53.3% for headache, with significant differences between E-cigarette users and non-users. Compared to non-smokers, E-cigarette users reported significantly higher prevalence of dry mouth (33.1% vs. 23.4%; P < 0.001), black tongue (5.9% vs. 2.8%; P = 0.002), and heart palpitation (26.3%% vs. 22.8%; P = 0.001). Although two-thirds of the sample reported no change in their physiological functions, E-cigarette users reported significant improvement in their physiological functions compared to never smokers or tobacco users. Conclusion: Dental students showed good oral hygiene practices, but E-cigarette users showed a higher prevalence of health complications.Dental Biomaterials Research Chair, Deanship of Scientific Research, King Saud University. The funder has no role in the design of the study as well as in the methodology, analysis, and interpretation of the data
The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study
Aim The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. Methods This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. Results Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. Conclusion One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease
Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey
Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Burden of 375 diseases and injuries, risk-attributable burden of 88 risk factors, and healthy life expectancy in 204 countries and territories, including 660 subnational locations, 1990–2023: a systematic analysis for the Global Burden of Disease Study 2023
Background:
For more than three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has provided a framework to quantify health loss due to diseases, injuries, and associated risk factors. This paper presents GBD 2023 findings on disease and injury burden and risk-attributable health loss, offering a global audit of the state of world health to inform public health priorities. This work captures the evolving landscape of health metrics across age groups, sexes, and locations, while reflecting on the remaining post-COVID-19 challenges to achieving our collective global health ambitions.
Methods:
The GBD 2023 combined analysis estimated years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 375 diseases and injuries, and risk-attributable burden associated with 88 modifiable risk factors. Of the more than 310 000 total data sources used for all GBD 2023 (about 30% of which were new to this estimation round), more than 120 000 sources were used for estimation of disease and injury burden and 59 000 for risk factor estimation, and included vital registration systems, surveys, disease registries, and published scientific literature. Data were analysed using previously established modelling approaches, such as disease modelling meta-regression version 2.1 (DisMod-MR 2.1) and comparative risk assessment methods. Diseases and injuries were categorised into four levels on the basis of the established GBD cause hierarchy, as were risk factors using the GBD risk hierarchy. Estimates stratified by age, sex, location, and year from 1990 to 2023 were focused on disease-specific time trends over the 2010–23 period and presented as counts (to three significant figures) and age-standardised rates per 100 000 person-years (to one decimal place). For each measure, 95% uncertainty intervals [UIs] were calculated with the 2·5th and 97·5th percentile ordered values from a 250-draw distribution.
Findings:
Total numbers of global DALYs grew 6·1% (95% UI 4·0–8·1), from 2·64 billion (2·46–2·86) in 2010 to 2·80 billion (2·57–3·08) in 2023, but age-standardised DALY rates, which account for population growth and ageing, decreased by 12·6% (11·0–14·1), revealing large long-term health improvements. Non-communicable diseases (NCDs) contributed 1·45 billion (1·31–1·61) global DALYs in 2010, increasing to 1·80 billion (1·63–2·03) in 2023, alongside a concurrent 4·1% (1·9–6·3) reduction in age-standardised rates. Based on DALY counts, the leading level 3 NCDs in 2023 were ischaemic heart disease (193 million [176–209] DALYs), stroke (157 million [141–172]), and diabetes (90·2 million [75·2–107]), with the largest increases in age-standardised rates since 2010 occurring for anxiety disorders (62·8% [34·0–107·5]), depressive disorders (26·3% [11·6–42·9]), and diabetes (14·9% [7·5–25·6]). Remarkable health gains were made for communicable, maternal, neonatal, and nutritional (CMNN) diseases, with DALYs falling from 874 million (837–917) in 2010 to 681 million (642–736) in 2023, and a 25·8% (22·6–28·7) reduction in age-standardised DALY rates. During the COVID-19 pandemic, DALYs due to CMNN diseases rose but returned to pre-pandemic levels by 2023. From 2010 to 2023, decreases in age-standardised rates for CMNN diseases were led by rate decreases of 49·1% (32·7–61·0) for diarrhoeal diseases, 42·9% (38·0–48·0) for HIV/AIDS, and 42·2% (23·6–56·6) for tuberculosis. Neonatal disorders and lower respiratory infections remained the leading level 3 CMNN causes globally in 2023, although both showed notable rate decreases from 2010, declining by 16·5% (10·6–22·0) and 24·8% (7·4–36·7), respectively. Injury-related age-standardised DALY rates decreased by 15·6% (10·7–19·8) over the same period. Differences in burden due to NCDs, CMNN diseases, and injuries persisted across age, sex, time, and location. Based on our risk analysis, nearly 50% (1·27 billion [1·18–1·38]) of the roughly 2·80 billion total global DALYs in 2023 were attributable to the 88 risk factors analysed in GBD. Globally, the five level 3 risk factors contributing the highest proportion of risk-attributable DALYs were high systolic blood pressure (SBP), particulate matter pollution, high fasting plasma glucose (FPG), smoking, and low birthweight and short gestation—with high SBP accounting for 8·4% (6·9–10·0) of total DALYs. Of the three overarching level 1 GBD risk factor categories—behavioural, metabolic, and environmental and occupational—risk-attributable DALYs rose between 2010 and 2023 only for metabolic risks, increasing by 30·7% (24·8–37·3); however, age-standardised DALY rates attributable to metabolic risks decreased by 6·7% (2·0–11·0) over the same period. For all but three of the 25 leading level 3 risk factors, age-standardised rates dropped between 2010 and 2023—eg, declining by 54·4% (38·7–65·3) for unsafe sanitation, 50·5% (33·3–63·1) for unsafe water source, and 45·2% (25·6–72·0) for no access to handwashing facility, and by 44·9% (37·3–53·5) for child growth failure. The three leading level 3 risk factors for which age-standardised attributable DALY rates rose were high BMI (10·5% [0·1 to 20·9]), drug use (8·4% [2·6 to 15·3]), and high FPG (6·2% [–2·7 to 15·6]; non-significant).
Interpretation:
Our findings underscore the complex and dynamic nature of global health challenges. Since 2010, there have been large decreases in burden due to CMNN diseases and many environmental and behavioural risk factors, juxtaposed with sizeable increases in DALYs attributable to metabolic risk factors and NCDs in growing and ageing populations. This long-observed consequence of the global epidemiological transition was only temporarily interrupted by the COVID-19 pandemic. The substantially decreasing CMNN disease burden, despite the 2008 global financial crisis and pandemic-related disruptions, is one of the greatest collective public health successes known. However, these achievements are at risk of being reversed due to major cuts to development assistance for health globally, the effects of which will hit low-income countries with high burden the hardest. Without sustained investment in evidence-based interventions and policies, progress could stall or reverse, leading to widespread human costs and geopolitical instability. Moreover, the rising NCD burden necessitates intensified efforts to mitigate exposure to leading risk factors—eg, air pollution, smoking, and metabolic risks, such as high SBP, BMI, and FPG—including policies that promote food security, healthier diets, physical activity, and equitable and expanded access to potential treatments, such as GLP-1 receptor agonists. Decisive, coordinated action is needed to address long-standing yet growing health challenges, including depressive and anxiety disorders. Yet this can be only part of the solution. Our response to the NCD syndemic—the complex interaction of multiple health risks, social determinants, and systemic challenges—will define the future landscape of global health. To ensure human wellbeing, economic stability, and social equity, global action to sustain and advance health gains must prioritise reducing disparities by addressing socioeconomic and demographic determinants, ensuring equitable health-care access, tackling malnutrition, strengthening health systems, and improving vaccination coverage. We live in times of great opportunity
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. METHODS The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model-a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates-with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality-which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. FINDINGS The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2-100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1-290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1-211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4-48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3-37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7-9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. INTERPRETATION Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. FUNDING Bill & Melinda Gates Foundation
- …
