93 research outputs found

    A \u3cem\u3eMedicago Truncatula\u3c/em\u3e Population Segregating for Aluminum Tolerance

    Get PDF
    Aluminium (Al) toxicity, manifested in inhibition of root elongation and reduced plant growth, is a major cause of poor crop yields on acid soils, which comprise up to 40% of the world’s arable land. Al toxicity associated with acid soils has been a major obstacle in alfalfa (Medicago sativa) production in the USA, as well as in tropical areas of the world. Recent molecular marker mapping studies indicate that the genomes of M. truncatula and M. sativa are highly similar (Choi et al., 2004). Thus, M. truncatula could be used as a source of genes that could be used to improve Al tolerance of cultivated alfalfa. The objective of this study is to identify QTL for Al tolerance in M. truncatula, using M. truncatula EST-SSR markers and a population from a cross between the Al sensitive Jemalong A17 and an Al tolerant USDA plant introduction, PI 566890 (Sledge et al., 2004), with the long term goal of cloning Al tolerance genes to improve cultivated alfalfa for Al tolerance

    Aluminum Tolerance in the Model Legume \u3cem\u3eMedicago Truncatula\u3c/em\u3e

    Get PDF
    Aluminum (Al) is the most abundant metal found in the earth\u27s crust, comprising up to 7% of its mass. At low pH, Al becomes soluble and available to plants, resulting in inhibition of root elongation and reduced plant growth. Aluminum toxicity associated with acid soils has been a major obstacle in alfalfa (Medicago sativa) production. The objective of this study is to identify genes that are differentially expressed under normal and Al stress conditions in the model legume M. truncatula, with the long term goal of using these genes to improve cultivated alfalfa

    Switchgrass

    Get PDF
    Switchgrass (Panicum virgatum L.) is a perennialwarm-season grass native to the grasslands of North America, is a model perennial grass for bioenergy, and is the most advanced herbaceous perennial bioenergy feedstock. Best management practices have been developed for switchgrass bioenergy production for the agroecoregions to which it is adapted. Field production of switchgrass likely will occur on cropland that is marginally productive for row crops, similar to land that was enrolled in the Conservation Reserve Program. Long-term, field-scale research demonstrates that switchgrass for bioenergy is productive, profitable for the farmer, and protective of the environment. Switchgrass was selected by the Bioenergy Feedstock Development Program (BFDP) at the U.S. Department of Energy (DoE) as a model herbaceous species because of its potential to simultaneously meet energy demands and address global climate change [1]. It is a perennial, warm-season (C4) grass native to North America that is broadly adapted throughout the United States and is found in every state east of the Rocky Mountains [2]. Like many perennial C4 grasses, switchgrass is highly tolerant to abiotic stresses such as drought, temperature extremes, and salinity. For that reason, it is being recommended for biomass production on marginally productive cropland where it would have minimal land use competition with commercial food crops

    Resistance to Wheat streak mosaic virus identified in synthetic wheat lines

    Get PDF
    Citation: Shoup Rupp, J. L., Simon, Z. G., Gillett-Walker, B., & Fellers, J. P. (2014). Resistance to Wheat streak mosaic virus identified in synthetic wheat lines. Retrieved from http://krex.ksu.eduWheat streak mosaic virus (WSMV) is an important pathogen in wheat that causes significant yield losses each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resistance genes to WSMV. Two resistance genes have been derived from Thinopyrum intermedium through chromosome engineering, while a third gene was transferred from bread wheat through classical breeding. New sources of resistance are needed and synthetic wheat lines provide a means of accessing genetic variability in wheat progenitors. A collection of wheat synthetic lines was screened for WSMV resistance. Four lines, 07-SYN-27, -106, -164, and -383 had significant levels of resistance. Resistance was effective at 18 °C and virus accumulation was similar to the resistant control, WGGRC50 containing Wsm1. At 25 °C, resistance was no longer effective and virus accumulation was similar to the susceptible control, Tomahawk

    AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population

    Get PDF
    The present study aimed to localize exotic quantitative trait locus (QTL) alleles for the improvement of leaf rust (P.triticina) resistance in an advanced backcross (AB) population, B22, which is derived from a cross between the winter wheat cultivar Batis (Triticumaestivum) and the synthetic wheat accession Syn022L. The latter was developed from hybridization of T.turgidum ssp. dicoccoides and T.tauschii. Altogether, 250 BC2F3 lines of B22 were assessed for seedling resistance against the leaf rust isolate 77WxR under controlled conditions. In addition, field resistance against leaf rust was evaluated by assessing symptom severity under natural infestation across multiple environments. Simultaneously, population B22 was genotyped with a total of 97 SSR markers, distributed over the wheat A, B and D genomes. The phenotype and genotype data were subjected to QTL analysis by applying a 3-factorial mixed model analysis of variance including the marker genotype as a fixed effect and the environments, the lines and the marker by environment interactions as random effects. The QTL analysis revealed six putative QTLs for seedling resistance and seven for field resistance. For seedling resistance, the effects of exotic QTL alleles improved resistance at all detected loci. The maximum decrease of disease symptoms (−46.3%) was associated with marker locus Xbarc149 on chromosome 1D. For field resistance, two loci had stable main effects across environments and five loci exhibited marker by environment interaction effects. The strongest effects were detected at marker locus Xbarc149 on chromosome 1D, at which the exotic allele decreased seedling symptoms by 46.3% and field symptoms by 43.6%, respectively. Some of the detected QTLs co-localized with known resistance genes, while others appear to be as novel resistance loci. Our findings indicate, that the exotic wheat accession Syn022L may be useful for the improvement of leaf rust resistance in cultivated wheat

    Genetic analysis of wheat domestication and evolution under domestication

    Get PDF
    Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement

    Genetic Insight into Yield-Associated Traits of Wheat Grown in Multiple Rain-Fed Environments

    Get PDF
    Background: Grain yield is a key economic driver of successful wheat production. Due to its complex nature, little is known regarding its genetic control. The goal of this study was to identify important quantitative trait loci (QTL) directly and indirectly affecting grain yield using doubled haploid lines derived from a cross between Hanxuan 10 and Lumai 14. Methodology/Principal Findings: Ten yield-associated traits, including yield per plant (YP), number of spikes per plan

    Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation

    Get PDF
    The duration of pre-anthesis developmental phases is of interest in breeding for improved adaptation and yield potential in temperate cereals. Yet despite numerous studies on the genetic control of anthesis (flowering) time and floral initiation, little is known about the genetic control of other pre-anthesis phases. Furthermore, little is known about the effect that changes in the duration of pre-anthesis phases could have on traits related to leaf appearance and tillering, or dry matter accumulation before terminal spikelet initiation (TS). The genetic control of the leaf and spikelet initiation phase (LS; from sowing to TS), the stem elongation phase (SE; from TS to anthesis), and, within the latter, from TS to flag leaf appearance and from then to anthesis, was studied in two doubled-haploid, mapping bread wheat populations, Cranbrook×Halberd and CD87×Katepwa, in two field experiments (ACT and NSW, Australia). The lengths of phases were estimated from measurements of both TS and the onset of stem elongation. Dry weight per plant before TS, rate of leaf appearance, tillering rate, maximum number of tillers and number of leaves, and dry weight per plant at TS were also estimated in the Cranbrook×Halberd population. More genomic regions were identified for the length of the different pre-anthesis phases than for total time to anthesis. Although overall genetic correlations between LS and SE were significant and positive, independent genetic variability between LS and SE, and several quantitative trait loci (QTLs) with different effects on both phases were found in the two populations. Several of these QTLs (which did not seem to coincide with reported major genes) could be of interest for breeding purposes since they were only significant for either LS or SE. There was no relationship between LS and the rate of leaf appearance. LS was strongly and positively correlated with dry weight at TS but only slightly negatively correlated with early vigour (dry weight before TS). Despite significant genetic correlations between LS and some tillering traits, shortening LS so as to lengthen SE without modifying total time to anthesis would not necessarily reduce tillering capacity, as QTLs for tillering traits did not coincide with those QTLs significant only for LS or SE. Therefore, the study of different pre-anthesis phases is relevant for a better understanding of genetic factors regulating developmental time and may offer new tools for fine-tuning it in breeding for both adaptability and yield potential
    corecore