486 research outputs found

    Technical and Clinical Outcomes After Transcatheter Edge-to-Edge Repair of Mitral Regurgitation in Male and Female Patients: Is Equality Achieved?

    Get PDF
    Currently, no clear impact of sex on short- and long-term survival following transcatheter edge-to-edge mitral valve repair (TEER) is evident, although no data are available on postprocedural life expectancy. Our aim was to assess sex-specific differences in outcomes of patients with mitral regurgitation (MR) treated by TEER. Short-term and 5-year outcomes in men and women undergoing TEER between 2011 and 2018 who were included in the large, multicenter, real-world MitraSwiss registry were analyzed. Outcomes were compared stratified by sex and according to MR cause (primary versus secondary). The impact of TEER on postprocedural life expectancy was estimated by relative survival analysis. Among 1142 patients aged 60 to 89 years, 39.8% were women. They were older, with fewer cardiovascular risk factors and lower functional capacity compared with men. Thirty-day mortality was higher in men than in women (3.3% versus 1.1%; odds ratio, 3.16 [95% CI, 1.16-10.7]; P=0.020). Five-year survival was comparable in both sexes (adjusted hazard ratio for 5-year mortality in men, 1.14 [95% CI, 0.90-1.44], P=0.275). Both men and women with either primary or secondary MR showed similar clinical efficacy over time. TEER provided high relative survival estimates among all groups, and fully restored predicted life expectancy in women with primary MR (5-year relative survival estimate, 97.4% [95% CI, 85.5-107.0]). TEER is not associated with increased short-term mortality in women, whereas 5-year outcomes are comparable between sexes. Moreover, TEER completely restored normal life expectancy in women with primary MR. A residual excess mortality persists in secondary MR, independently of sex

    Assessment of genetically modified maize\ua04114 for food and feed uses, under Regulation (EC) No\ua01829/2003 (application EFSA-GMO-NL-2014-123)

    Get PDF
    Maize\ua04114 was developed through Agrobacterium\ua0tumefaciens-mediated transformation to provide protection against certain lepidopteran and coleopteran pests by expression of the Cry1F, Cry34Ab1 and Cry35Ab1 proteins derived from Bacillus\ua0thuringiensis, and tolerance to the herbicidal active ingredient glufosinate-ammonium by expression of the PAT protein derived from Streptomyces viridochromogenes. The molecular characterisation data did not identify issues requiring assessment for food/feed safety. None of the compositional, agronomic and phenotypic differences identified between maize\ua04114 and the non-genetically modified (GM) comparator(s) required further assessment. There were no concerns regarding the potential toxicity and allergenicity of the newly expressed proteins Cry1F, Cry34Ab1, Cry35Ab1 and PAT, and no evidence that the genetic modification might significantly change the overall allergenicity of maize 4114. The nutritional value of food/feed derived from maize 4114 is not expected to differ from that derived from non-GM maize varieties and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize\ua04114 grains into the environment, maize\ua04114 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize\ua04114. The genetically modified organism (GMO) Panel\ua0concludes that maize\ua04114 is as safe as the non-GM comparator(s) and non-GM reference varieties with respect to potential effects on human and animal health and the environment in the context of the scope of this application

    Assessment of genetically modified soybean MON 87705 × MON 87708 × MON 89788, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2015‐126)

    Get PDF
    Soybean MON 87705 × MON 87708 × MON 89788 (three‐event stack soybean) was produced by conventional crossing to combine three single soybean events: MON 87705, MON 87708 and MON 89788. This combination is intended to alter the fatty acid profile in the seed (in particular increasing the levels of oleic acid) and tolerance to glyphosate‐based and dicamba herbicides. The Genetically Modified Organisms Panel previously assessed the three single soybean events and did not identify safety concerns. No new data on the single soybean events, leading to modification of the original conclusions on their safety have been identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the three‐event stack soybean does not give rise to food and feed safety and nutritional concerns. In the case of accidental release of viable three‐event stack soybean seeds into the environment, this would not raise environmental safety concerns. The post‐market environmental monitoring plan and the reporting intervals are in line with the intended uses of soybean MON 87705 × MON 87708 × MON 89788. Considering the altered fatty acid profile of the three‐event stack soybean, a proposal for post‐market monitoring needs to be provided by the applicant. The GMO Panel notes that in the context of this application EFSA‐GMO‐NL‐2015‐126 the applicant did not provide a 90‐day study on MON 87705 soybean in line with the applicable legal requirements. Therefore, the GMO Panel is not in the position to finalise the risk assessment of soybean MON 87705 × MON 87708 × MON 89788 under the current regulatory frame

    Assessment of genetically modified maize MZIR098 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐DE‐2017‐142)

    Get PDF
    Maize MZIR098 was developed to confer tolerance to glufosinate‐ammonium‐containing herbicides and resistance to certain coleopteran pests. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MZIR098 and its conventional counterpart needs further assessment, except for neutral detergent fibre (NDF) in grains, which does not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the eCry3.1Ab, mCry3A and PAT proteins as expressed in maize MZIR098, and finds no evidence that the genetic modification would change the overall allergenicity of maize MZIR098. In the context of this application, the consumption of food and feed from maize MZIR098 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MZIR098 is as safe as the conventional counterpart and non‐GM maize reference varieties tested, and no post‐market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MZIR098 grains into the environment, maize MZIR098 would not raise environmental safety concerns. The post‐market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MZIR098. In conclusion, the GMO Panel considers that maize MZIR098, as described in this application, is as safe as its conventional counterpart and the non‐GM maize reference varieties tested with respect to potential effects on human and animal health and the environment

    Assessment of genetically modified oilseed rape MS11 for food and feed uses, import and processing, under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐BE‐2016‐138)

    Get PDF
    Oilseed rape MS11 has been developed to confer male sterility and tolerance to glufosinate‐ammonium‐containing herbicides. Based on the information provided in the application and in line with the scope of application EFSA‐GMO‐BE‐2016‐138, the genetically modified organism (GMO) Panel concludes that the molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic characteristics tested between oilseed rape MS11 and its conventional counterpart needs further assessment. No conclusions can be drawn for the compositional analysis due to the lack of an appropriate compositional data set. No toxicological or allergenicity concerns are identified for the Barnase, Barstar and PAT/bar proteins expressed in oilseed rape MS11. Owing to the incompleteness of the compositional analysis, the toxicological, allergenicity and nutritional assessment of oilseed rape MS11 cannot be completed. In the case of accidental release of viable oilseed rape MS11 seeds into the environment, oilseed rape MS11 would not raise environmental safety concerns. The post‐market environmental monitoring plan and reporting intervals are in line with the scope of the application. Since oilseed rape MS11 is designed to be used only for the production of hybrid seed, it is not expected to be commercialised as a stand‐alone product for food/feed uses. Thus, seeds harvested from oilseed rape MS11 are not expected to enter the food/feed chain, except accidentally. In this context, the GMO Panel notes that, oilseed rape MS11 would not pose risk to humans and animals, while the scale of environmental exposure will be substantially reduced compared to a stand‐alone product

    Measurement of the Z/gamma* + b-jet cross section in pp collisions at 7 TeV

    Get PDF
    The production of b jets in association with a Z/gamma* boson is studied using proton-proton collisions delivered by the LHC at a centre-of-mass energy of 7 TeV and recorded by the CMS detector. The inclusive cross section for Z/gamma* + b-jet production is measured in a sample corresponding to an integrated luminosity of 2.2 inverse femtobarns. The Z/gamma* + b-jet cross section with Z/gamma* to ll (where ll = ee or mu mu) for events with the invariant mass 60 < M(ll) < 120 GeV, at least one b jet at the hadron level with pT > 25 GeV and abs(eta) < 2.1, and a separation between the leptons and the jets of Delta R > 0.5 is found to be 5.84 +/- 0.08 (stat.) +/- 0.72 (syst.) +(0.25)/-(0.55) (theory) pb. The kinematic properties of the events are also studied and found to be in agreement with the predictions made by the MadGraph event generator with the parton shower and the hadronisation performed by PYTHIA.Comment: Submitted to the Journal of High Energy Physic

    Assessment of genetically modified soybean MON 87751 × MON 87701 × MON 87708 × MON 89788 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2016‐128)

    Get PDF
    Soybean MON 87751 × MON 87701 × MON 87708 × MON 89788 (four‐event stack soybean) was produced by conventional crossing to combine four single events: MON 87751, MON 87701, MON 87708 and MON 89788. The GMO Panel previously assessed the four single events and did not identify safety concerns. No new data on the single events have been identified that would lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological and allergenicity assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the four‐event stack soybean does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the four‐event stack soybean, as described in this application, is as safe as and nutritionally equivalent to the non‐GM comparator and the non‐GM reference varieties tested. In the case of accidental release of viable seeds of the four‐event stack soybean into the environment, this would not raise environmental safety concerns. The post‐market environmental monitoring plan and reporting intervals are in line with the intended uses of the four‐event stack soybean. Post‐market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the four‐event stack soybean is as safe as the non‐GM comparator and the tested non‐GM reference varieties with respect to potential effects on human and animal health and the environment
    • 

    corecore