105 research outputs found

    Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis

    Get PDF
    Follicular lymphoma is one of the most common adult lymphoma, and remains virtually incurable despite its relatively indolent nature. t(14;18)(q32;q21) translocation, the genetic hallmark and early initiating event of follicular lymphoma (FL) pathogenesis, is also present at low frequency in the peripheral blood of healthy individuals. It has long been assumed that in healthy individuals t(14;18) is carried by circulating quiescent naive B cells, where its oncogenic potential would be restrained. Here, we question this current view and demonstrate that in healthy individuals, t(14;18) is actually carried by an expanding population of atypical B cells issued from germinal centers, displaying genotypic and phenotypic features of FL, and prone to constitute potent premalignant FL niches. These findings strongly impact both on the current understanding of disease progression and on the proper handling of t(14;18) frequency in blood as a potential early biomarker for lymphoma

    Contiguous follicular lymphoma and follicular lymphoma in situ harboring N-glycosylated sites

    No full text
    International audienceFollicular lymphoma in situ (FLIS) is composed of a clonal B-cell population harboring the typical t(14;18) hallmark of follicular lymphoma (FL), forming unconventional BCL2 Bright CD10 + cell foci in an otherwise normal reactive lymph node (LN). The diagnosis of FLIS is made on the fortuitous discovery of unconventional BCL2 Bright CD10 + cell foci. 1 Several studies recently demonstrated that FLIS are already advanced precursors in follicular lymphomagene-sis, but not necessarily committed to malignant transformation. 2,3 However, the relationship between FLIS and FL still remains unclear, as only a minority (<5%) of FLIS patients eventually develop FL. This is in line with the usually indolent progression of the disease, and the genomic instability observed in FLIS cells, which can engage FL precursor cells either in an evolutionary malignant process, or to an evolutionary dead end. 4 We report the case of a 35-year old male patient who presented with a cervical adenopathy. Histological examination of the excised LN displayed an altered architecture suggestive of FL, consisting of high number of monomorphic large follicles, uniformly spread in the cortical and medullary areas. Most follicles contained a predominant population of small cleaved cells with scant macrophages and mitoses. The mantle zone was reduced or absent. However, in a minor cortical area, a few follicles showed features mimicking residual classical germ cells (GC), including a smaller size, higher cell polymorphism, and a preserved mantle zone (Figure 1A). The BCL2 immunostaining (clone 100) was negative in follicles displaying a typical FL pattern. In contrast, follicles located in the pseudo-residual area were BCL2bright, i.e. more strongly stained than the surrounding mantle zone and reactive T cells (Figure 1B). Most follicles were only slightly positive for Ki67 (Online Supplementary Figure S1A). Both BCL2 – and BCL2 + follicles were CD10 positive (Online Supplementary Figure S1B) and contained a BCL2/JH break-point evidenced by fluorescence in situ hybridization (FISH) (Figure 1C). Taken together these results suggested the diagnosis of simultaneous occurrence of BCL2 – FL (grade I/II) and of BCL2 + FLIS in the same LN. We decided to further analyze those two lesions independently, and performed macrodissection in order to proceed with individual molecular analyses when required. Sanger sequenc-ing revealed that both FLIS and FL shared the same BCL2/JH sequence at the t(14;18)+ breakpoint, and thus originated from the same clone (Figure 1D). We tested two other anti-BCL2 antibodies (E17, SP66) directed against other epitopes, but the staining remained BCL2-in the FL area of the LN, similar to the anti-BCL2 antibody (clone 100) staining (Figure 1E and F). We thus sequenced exons 1 to 3 of the BCL2 gene (B-cell CLL/lym-phoma 2, NG_009361.1). Punctual mutations, resulting in amino acid substitutions, were found in the FL component (Online Supplementary Table S1), and were indeed located in the targeted aa41 to aa54 epitope of clone 100 (mutation

    In Vivo Reinsertion of Excised Episomes by the V(D)J Recombinase: A Potential Threat to Genomic Stability

    Get PDF
    It has long been thought that signal joints, the byproducts of V(D)J recombination, are not involved in the dynamics of the rearrangement process. Evidence has now started to accumulate that this is not the case, and that signal joints play unsuspected roles in events that might compromise genomic integrity. Here we show both ex vivo and in vivo that the episomal circles excised during the normal process of receptor gene rearrangement may be reintegrated into the genome through trans-V(D)J recombination occurring between the episomal signal joint and an immunoglobulin/T-cell receptor target. We further demonstrate that cryptic recombination sites involved in T-cell acute lymphoblastic leukemia–associated chromosomal translocations constitute hotspots of insertion. Eventually, the identification of two in vivo cases associating episomal reintegration and chromosomal translocation suggests that reintegration events are linked to genomic instability. Altogether, our data suggest that V(D)J-mediated reintegration of episomal circles, an event likely eluding classical cytogenetic screenings, might represent an additional potent source of genomic instability and lymphoid cancer

    V(D)J-mediated Translocations in Lymphoid Neoplasms: A Functional Assessment of Genomic Instability by Cryptic Sites

    Get PDF
    Most lymphoid malignancies are initiated by specific chromosomal translocations between immunoglobulin (Ig)/T cell receptor (TCR) gene segments and cellular proto-oncogenes. In many cases, illegitimate V(D)J recombination has been proposed to be involved in the translocation process, but this has never been functionally established. Using extra-chromosomal recombination assays, we determined the ability of several proto-oncogenes to target V(D)J recombination, and assessed the impact of their recombinogenic potential on translocation rates in vivo. Our data support the involvement of 2 distinct mechanisms: translocations involving LMO2, TAL2, and TAL1 in T cell acute lymphoblastic leukemia (T-ALL), are compatible with illegitimate V(D)J recombination between a TCR locus and a proto-oncogene locus bearing a fortuitous but functional recombination site (type 1); in contrast, translocations involving BCL1 and BCL2 in B cell non-Hodgkin's lymphomas (B-NHL), are compatible with a process in which only the IgH locus breaks are mediated by V(D)J recombination (type 2). Most importantly, we show that the t(11;14)(p13;q32) translocation involving LMO2 is present at strikingly high frequency in normal human thymus, and that the recombinogenic potential conferred by the LMO2 cryptic site is directly predictive of the in vivo level of translocation at that locus. These findings provide new insights into the regulation forces acting upon genomic instability in B and T cell tumorigenesis

    Unraveling the consecutive recombination events in the human IGK locus

    Get PDF
    In addition to the classical Vkappa-Jkappa, Vkappa-kappa deleting element (Kde), and intron-Kde gene rearrangements, atypical recombinations involving Jkappa recombination signal sequence (RSS) or intronRSS elements can occur in the Igkappa (IGK) locus, as observed in human B cell malignancies. In-depth analysis revealed that atypical JkappaRSS-intronRSS, Vkappa-intronRSS, and JkappaRSS-Kde recombinations not only occur in B cell malignancies, but rather reflect physiological gene rearrangements present in normal human B cells as well. Excision circle analysis and recombination substrate assays can discriminate between single-step vs multistep rearrangements. Using this combined approach, we unraveled that the atypical Vkappa-intronRSS and JkappaRSS-Kde pseudohybrid joints most probably result from ongoing recombination following an initial aberrant JkappaRSS-intronRSS signal joint formation. Based on our observations in normal and malignant human B cells, a model is presented to describe the sequential (classical and atypical) recombination events in the human IGK locus and their estimated relative frequencies (0.2-1.0 vs < 0.03). The initial JkappaRSS-intronRSS signal joint formation (except for Jkappa1RSS-intronRSS) might be a side event of an active V(D)J recombination mechanism, but the subsequent formation of Vkappa-intronRSS and JkappaRSS-Kde pseudohybrid joints can represent an alternative pathway for IGK allele inactivation and allelic exclusion, in addition to classical Ckappa deletions. Although usage of this alternative pathway is limited, it seems essential for inactivation of those IGK alleles that have undergone initial aberrant recombinations, which might otherwise hamper selection of functional Ig L chain proteins

    Agricultural pesticide exposure and the molecular connection to lymphomagenesis

    Get PDF
    The t(14;18) translocation constitutes the initiating event of a causative cascade leading to follicular lymphoma (FL). t(14;18) translocations are present in blood from healthy individuals, but there is a trend of increased prevalence in farmers exposed to pesticides, a group recently associated with higher risk of t(14;18)+ non-Hodgkin's lymphoma development. A direct connection between agricultural pesticide use, t(14;18) in blood, and malignant progression, however, has not yet been demonstrated. We followed t(14;18) clonal evolution over 9 yr in a cohort of farmers exposed to pesticides. We show that exposed individuals bear particularly high t(14;18) frequencies in blood because of a dramatic clonal expansion of activated t(14;18)+ B cells. We further demonstrate that such t(14;18)+ clones recapitulate the hallmark features of developmentally blocked FL cells, with some displaying aberrant activation-induced cytidine deaminase activity linked to malignant progression. Collectively, our data establish that expanded t(14;18)+ clones constitute bona fide precursors at various stages of FL development, and provide a molecular connection between agricultural pesticide exposure, t(14;18) frequency in blood, and clonal progression

    A new mouse model for the trisomy of the Abcg1–U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome

    Get PDF
    Mental retardation in Down syndrome (DS), the most frequent trisomy in humans, varies from moderate to severe. Several studies both in human and based on mouse models identified some regions of human chromosome 21 (Hsa21) as linked to cognitive deficits. However, other intervals such as the telomeric region of Hsa21 may contribute to the DS phenotype but their role has not yet been investigated in detail. Here we show that the trisomy of the 12 genes, found in the 0.59 Mb (Abcg1–U2af1) Hsa21 sub-telomeric region, in mice (Ts1Yah) produced defects in novel object recognition, open-field and Y-maze tests, similar to other DS models, but induces an improvement of the hippocampal-dependent spatial memory in the Morris water maze along with enhanced and longer lasting long-term potentiation in vivo in the hippocampus. Overall, we demonstrate the contribution of the Abcg1–U2af1 genetic region to cognitive defect in working and short-term recognition memory in DS models. Increase in copy number of the Abcg1–U2af1 interval leads to an unexpected gain of cognitive function in spatial learning. Expression analysis pinpoints several genes, such as Ndufv3, Wdr4, Pknox1 and Cbs, as candidates whose overexpression in the hippocampus might facilitate learning and memory in Ts1Yah mice. Our work unravels the complexity of combinatorial genetic code modulating different aspect of mental retardation in DS patients. It establishes definitely the contribution of the Abcg1–U2af1 orthologous region to the DS etiology and suggests new modulatory pathways for learning and memory
    corecore