11 research outputs found

    Predicting building age from urban form at large scale

    Get PDF
    To stay within 1.5 °C of global warming, reducing energy-related emissions in the building sector is essential. Rather than generic climate recommendations, this requires tailored, low-carbon urban planning solutions and spatially explicit methods that can inform policy measures at urban, street and building scale. Here, we propose a scalable method that is able to predict building age information in different European countries using only open urban morphology data. We find that spatially cross-validated regression models are sufficiently robust to generalize and predict building age in unseen cities with a mean absolute error (MAE) between 15.3 years (Netherlands) and 19.9 years (Spain). Our experiments show that large-scale models improve generalization for predicting across cities, but are not needed to infer missing data within known cities. Filling data gaps within known cities is possible with a MAE between 9.6 years (Netherlands) and 16.7 years (Spain). Overall, our results demonstrate the feasibility of generating missing age data in different contexts across Europe and informing climate mitigation policies such as large-scale energy retrofits. For the French residential building stock, we find that using age predictions to target retrofit efforts can increase energy savings by more than 50% compared to missing age data. Finally, we highlight challenges posed by data inconsistencies and urban form differences between countries that need to be addressed for an actual roll-out of such methods

    A Causal Discovery Approach To Learn How Urban Form Shapes Sustainable Mobility Across Continents

    Full text link
    Global sustainability requires low-carbon urban transport systems, shaped by adequate infrastructure, deployment of low-carbon transport modes and shifts in travel behavior. To adequately implement alterations in infrastructure, it's essential to grasp the location-specific cause-and-effect mechanisms that the constructed environment has on travel. Yet, current research falls short in representing causal relationships between the 6D urban form variables and travel, generalizing across different regions, and modeling urban form effects at high spatial resolution. Here, we address all three gaps by utilizing a causal discovery and an explainable machine learning framework to detect urban form effects on intra-city travel based on high-resolution mobility data of six cities across three continents. We show that both distance to city center, demographics and density indirectly affect other urban form features. By considering the causal relationships, we find that location-specific influences align across cities, yet vary in magnitude. In addition, the spread of the city and the coverage of jobs across the city are the strongest determinants of travel-related emissions, highlighting the benefits of compact development and associated benefits. Differences in urban form effects across the cities call for a more holistic definition of 6D measures. Our work is a starting point for location-specific analysis of urban form effects on mobility behavior using causal discovery approaches, which is highly relevant for city planners and municipalities across continents.Comment: 22 pages, 13 figures, 4 table

    Organic matter fluxes and biogeochemical processes in the OMZ off Peru, Cruise No. M138, 01 June - 03 July 2017, Callao (Peru) - Bahia Las Minas (Panama)

    Get PDF
    The oxygen minimum zone (OMZ) in the eastern tropical South Pacific Ocean is tightly connected to the coastal upwelling system off Peru. The high biological productivity off Peru is therefore, driven by the complex interplay between the amount of nutrients recycled by remineralisation processes in the OMZ and the upwelling which brings these nutrients to the surface layer. However, surprisingly little is known about organic matter cycling and its effects on biogeochemical processes in the OMZ off Peru. To this end we conducted a first comprehensive study on the role of organic matter for the biogeochemical processes and the maintenance of the OMZ off Peru. M138 combined measurements of marine biogeochemistry, microbiology, physical oceanography and air chemistry with foci on (i) the efficiency of the biological pump, (ii) the nitrogen cycle processes in the OMZ, (iii) the ventilation of the OMZ as well as (iv) the air/sea gas exchange across the ocean/atmosphere interface and (v) aerosol deposition. The METEOR cruise M138 was performed as part of the third phase of the SFB754 'Climate-Biogeochemistry Interactions in the Tropical Ocean' (www.sfb754.de)

    Significant benefits of AIP testing and clinical screening in familial isolated and young-onset pituitary tumors

    Get PDF
    Context Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene are responsible for a subset of familial isolated pituitary adenoma (FIPA) cases and sporadic pituitary neuroendocrine tumors (PitNETs). Objective To compare prospectively diagnosed AIP mutation-positive (AIPmut) PitNET patients with clinically presenting patients and to compare the clinical characteristics of AIPmut and AIPneg PitNET patients. Design 12-year prospective, observational study. Participants & Setting We studied probands and family members of FIPA kindreds and sporadic patients with disease onset ≤18 years or macroadenomas with onset ≤30 years (n = 1477). This was a collaborative study conducted at referral centers for pituitary diseases. Interventions & Outcome AIP testing and clinical screening for pituitary disease. Comparison of characteristics of prospectively diagnosed (n = 22) vs clinically presenting AIPmut PitNET patients (n = 145), and AIPmut (n = 167) vs AIPneg PitNET patients (n = 1310). Results Prospectively diagnosed AIPmut PitNET patients had smaller lesions with less suprasellar extension or cavernous sinus invasion and required fewer treatments with fewer operations and no radiotherapy compared with clinically presenting cases; there were fewer cases with active disease and hypopituitarism at last follow-up. When comparing AIPmut and AIPneg cases, AIPmut patients were more often males, younger, more often had GH excess, pituitary apoplexy, suprasellar extension, and more patients required multimodal therapy, including radiotherapy. AIPmut patients (n = 136) with GH excess were taller than AIPneg counterparts (n = 650). Conclusions Prospectively diagnosed AIPmut patients show better outcomes than clinically presenting cases, demonstrating the benefits of genetic and clinical screening. AIP-related pituitary disease has a wide spectrum ranging from aggressively growing lesions to stable or indolent disease course

    EUBUCCO v0.1: European building stock characteristics in a common and open database for 200+ million individual buildings

    No full text
    Abstract Building stock management is becoming a global societal and political issue, inter alia because of growing sustainability concerns. Comprehensive and openly accessible building stock data can enable impactful research exploring the most effective policy options. In Europe, efforts from citizen and governments generated numerous relevant datasets but these are fragmented and heterogeneous, thus hindering their usability. Here, we present eubucco v0.1, a database of individual building footprints for ~202 million buildings across the 27 European Union countries and Switzerland. Three main attributes – building height, construction year and type – are included for respectively 73%, 24% and 46% of the buildings. We identify, collect and harmonize 50 open government datasets and OpenStreetMap, and perform extensive validation analyses to assess the quality, consistency and completeness of the data in every country. eubucco v0.1 provides the basis for high-resolution urban sustainability studies across scales – continental, comparative or local studies – using a centralized source and is relevant for a variety of use cases, e.g., for energy system analysis or natural hazard risk assessments

    Unexpected Photoreactivity in a NO<sub>2</sub>‑Functionalized Aluminum-MOF

    No full text
    The metal–organic framework CAU-10-NO<sub>2</sub> [Al­(OH)­BDC-NO<sub>2</sub>] (CAU stands for Christian-Albrechts-University; H<sub>2</sub>BDC-NO<sub>2</sub> is 5-nitroisophthalic acid) was observed to exhibit unexpected photochemical reactivity. Upon irradiation of the MOF with UV light with a wavelength of 365 nm (or with sunlight), guest molecules inside the pore system of the MOF can be oxidized and stable radicals are formed from the organic linker molecules. The reactivity toward different alcohols was studied by UV/vis spectroscopy and EPR spectroscopy. The amount of generated radicals depends on the size of the solvent molecules; however, as an exception, methanol shows a much lower reactivity than ethanol. DFT calculations were carried out to gain insights into these photochemical reactions. The results indicate that the nitro group is reduced to form a nitroso moiety. This was confirmed by means of NMR spectroscopy. The exact nature of the radical could not be revealed, but the results indicate that it could be a further reduced anionic nitroso radical. Methanol and ethanol can be distinguished using this photochemical reaction simply by the coloring of the irradiated MOF. Such a property is characteristic for a sensor; therefore, a synthesis procedure was developed to implement the MOF into a device by which the compound was directly grown onto gold substrates

    Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy

    No full text
    corecore