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Abstract
To stay within 1.5°C of global warming, reducing energy-related emissions in the
building sector is essential. Rather than generic climate recommendations, this re-
quires tailored, low-carbon urban planning solutions and spatially explicit methods
that can inform policy measures at urban, street and building scale. Here, we propose
a scalable method that is able to predict building age information in different Euro-
pean countries using only open urban morphology data. We find that spatially cross-
validated regression models are sufficiently robust to generalize and predict building
age in unseen cities with a mean absolute error (MAE) between 15.3 years (Nether-
lands) and 19.9 years (Spain). Our experiments show that large-scale models improve
generalization for predicting across cities, but are not needed to infer missing data
within known cities. Filling data gaps within known cities is possible with a MAE
between 9.6 years (Netherlands) and 16.7 years (Spain). Overall, our results demon-
strate the feasibility of generating missing age data in different contexts across Europe
and informing climate mitigation policies such as large-scale energy retrofits. For the
French residential building stock, we find that using age predictions to target retrofit
efforts can increase energy savings by more than 50% compared to missing age data.
Finally, we highlight challenges posed by data inconsistencies and urban form dif-
ferences between countries that need to be addressed for an actual roll-out of such
methods.

Keywords: Building age, Machine learning, Urban form, Energy modeling, Retrofit,
Spatial autocorrelation
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Highlights
• Assessing generalizability of age prediction across cities and countries based on

urban form.

• Evaluating amount of local data needed to fill data gaps.

• Detailed analysis of predictive performance across regions, construction periods,
settlement and buildings types.

• Assessing the usability of predictions to improve prioritization of large-scale
retrofits.

• Highlighting climate relevance of scalable, spatially explicit building attribute
prediction.

Key findings
• Filling data gaps within countries is possible.

• 10% local data allow inference of remaining unknown building ages.

• Massive training data improves generalization across regions.

• Generalizing across countries is not (yet) possible.

• Age predictions can inform retrofit policies and may significantly increase energy
savings.
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1 Introduction
The building sector is responsible for 31% of global final energy demand and 21%
of global greenhouse gas (GHG) emissions [1]. Building emissions must be reduced
by 80–90% by 2050 to reach the 1.5°C climate goal [2]. To implement solutions,
policy-makers, administrations, and companies demand tailored approaches that fit
their political, economic and climatic conditions [3, 4]. Yet, global assessments do
not adequately reflect the different local conditions [5] making it difficult to provide
geographically-differentiated and contextually relevant policy advice at local scale
[6]. For an improved granularity of climate solutions, the availability of large-scale
data is essential [5] and can help to translate high-level decisions into local actions.
Particularly, demand-side climate solutions, which are highlighted in the IPCC’s AR6
[7], require fine-grained analyses as they depend on local factors that vary across
regions [8]. For targeted, large-scale retrofitting of the housing stock, one of the key
demand-side solutions to decarbonizing cities, efficient identification of buildings with
high energy saving potentials is essential.

Here, the construction year of buildings is highly relevant. Several studies have
shown that the construction period is a key factor in modeling energy consumption of
buildings [9–12] as it serves as a proxy for thermal insulation [13], ventilation rate [14],
or glazing ratios [15]. As a result, old buildings often consume more energy than new
buildings. Aside from energy modeling, the construction period has a variety of other
important, climate change mitigation related applications. It is used in vulnerability
and risk assessment for natural hazards, for example for earthquakes [16–18], floods
[19], landslides [20] and extreme heat [21]. Moreover, it is important for material flow
analysis in the construction sector [22].

Yet, for more than two thirds of EU buildings the year of construction is not
publicly known. Only a few cities, regions and countries, such as the Netherlands,
Spain and France, make the data publicly available, while the majority of age cadaster
data needs to be bought, is subject to specific contractual conditions [23] or data
protection restrictions [12]. To fill existing data gaps, previous research has shown that
certain building characteristics can be inferred from its surrounding spatial context.
This includes predicting building attributes like type [24–26], height [23, 27] or age [11,
28–30] based on urban morphology data, which is publicly available across Europe.

However, previous work has made little use of the availability of the existing
open-access urban form data and was mostly focused on city level case studies [11,
28, 30]. Only a single study has aimed at generalizing across different cities, resulting
in low prediction performance [29]. The potential for an improved cross-regional
generalization by training on a large, heterogeneous dataset remains to be explored.
Also, the generalization capacity for geographically distant and urban-typologically
different regions has not been examined yet. Both are crucial to assess how well data
gaps can be filled for whole cities or countries. In addition, the majority of studies
lack adequate control for spatial-autocorrelation effects, resulting in overoptimistic
generalization estimates [11, 28, 30–32].

Here, we propose a scalable machine learning approach to predict missing building
age information across countries in the EU. Our goal is to help fill gaps in publicly
available administrative data to enable large-scale studies on the building stock with
high spatial resolution. In this regard, our main contribution is twofold: First, in
contrast to local case studies, we investigate generalizability of building age prediction
across regions in Europe. Second, we increase the spatial scope and identify benefits,
challenges and usability of large-scale building age prediction, especially in light of
massive training data and diverse urban form.

Overall, we examine the following subjects:

1. Local inference with partial data availability Certain regions have avail-
able data, but only for a percentage of buildings: we evaluate how well a model
trained on urban form characteristics can augment missing building age infor-
mation in areas with partial data availability.
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2. Regional generalization We examine how well such models can generalize
across cities and countries in the EU. Specifically, we want to see if it is possible
to fill data gaps for entire cities or countries by learning a model in different
regions for which we have data. To this end, we quantitatively assess how the
generalization accuracy deteriorates over distance.

3. Need for massive data To evaluate the potential of large-scale studies, we
analyze the impact of additional and diverse training data on the prediction
accuracy. The goal is to determine how many training samples are needed
for an optimal model, especially given that the current literature is limited to
regional case studies.

4. Inspection of prediction results We inspect our results and compare the
predictive performance between construction periods, regions, settlement and
building types to provide more insights into the prediction making. We highlight
differences in the feature importance and other country-specific challenges to
make the predictions more understandable and inform applications that build
on the inferred data.

5. Applicability for retrofit policies At last, we evaluate the usability of the
inferred building age for energy modeling in order to inform retrofit policies on
a national level.

2 Methods
We train a supervised machine learning model to predict the construction year of
buildings in Netherlands, France and Spain based on publicly available 2D urban
morphology data. In this section, we describe what data sources and features are
used. We further describe which machine learning model is employed, how hyperpa-
rameters are optimized, and which metrics and cross-validation strategies are used
for evaluation. Lastly, we introduce the set of experiments we conduct to answer
our 5 research questions. Figure 1 provides an overview of the methods and machine
learning pipeline. To validate and reproduce our approach, we made the source code
available on GitHub: https://github.com/ai4up/ufo-prediction

Figure 1: Methods overview. The rounded boxes depict the main steps of our analysis,
starting with data preparation and ending with the inspection of our prediction results. The
boxes with sharp corners show the substeps for our preliminary experiments and prediction
inspection. The light gray text highlights key aspects of the steps.
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2.1 Data
Data source Several data sources are used for the prediction task. Information on
the building stock is derived from cadaster datasets from 2019 and 2021 downloaded
via the harmonized database on the European building stock, called EUBUCCO [33].
The cadaster datasets include information about the buildings’ geometry and at-
tributes like construction year, residential usage and height. In addition, we down-
loaded OpenStreetMap (OSM) data [34] to retrieve street network information on all
three countries. Both data sources are combined to construct the input features.

To analyze regional differences and calculate centrality features at the city level,
we split up the three countries into regions and cities according to the boundaries
of the Database of Global Administrative Areas (GADM) [35]. To assess differences
between settlement types, we further classified these regions by their degree of ur-
banization (DEGURBA) [36] into densely (cities), intermediate (towns), and thinly
(rural) populated areas.

We reuse the available DEGURBA classification [37] of Europe’s Local Adminis-
trative Units (LAU) [38]. As they slightly differ from GADM regions, we map LAU
and GADM regions based on their names and geometries. For ambiguous cases, we
estimate the settlement type with spatially proximate regions.

Target variable As the target variable, we choose the year of construction of a
single building. This information is available in the cadaster data with varying cov-
erage. We select the three countries with the highest coverage: France with 45%,
Spain with 98%, and the Netherlands with 100%. Together, they represent 36% of

Figure 2: Data overview. (A) Distribution of buildings from cities, towns and rural
regions according to DEGURBA classification. (B) Distribution of the year of construction
in the preprocessed dataset. (C) Average construction year per region in the Netherlands,
France and Spain.
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Construction year Other properties
Country n mean std Q1 Q3 residential [%] footprint [m2] height [m]
Spain 8,594,374 1975.6 32.4 1960 2001 78.3 181.2 5.0
France 10,638,655 1971.9 31.7 1958 1997 82.1 132.2 5.0
Netherlands 6,106,318 1972.3 26.7 1959 1992 – 124.5 5.6

Table 1: Summary statistics of preprocessed dataset. The mean, standard deviation
(std), 25% quantile (Q1), and 75% quantile (Q3) of the contruction year of all buildings in
the preprocessed dataset are shown. Further, the share of residential buildings, the average
height, and footprint area are depicted.

the EU building stock [33]. For our analysis, we focus on buildings constructed after
1900, as these are of most interest for energy modeling and other climate mitigation
related use cases. Also, for many older buildings the data quality deteriorates with
the construction year being rounded to the nearest decade or century, which intro-
duces unwanted noise into our dataset. After preprocessing, we utilize a sample of
25.3 million buildings with known year of construction information for our machine
learning approach. In the following, we use building age as a synonym for the year
of construction of buildings, as it improves readability and is commonly used in the
literature.

Figure 2 and table 1 provide an overview of the distribution of building age and
other key descriptive statistics of the data used in this study. Most importantly, the
mean construction year is similar in all countries. However, in the Netherlands there
are fewer new buildings and the overall distribution is more centered. In Spain the
majority of buildings is located in thinly-populated, rural regions (74.3%), whereas in
the Netherlands most buildings (43.1%) are located in densely-populated, urban areas.
This is noteworthy because the mean construction year differs between settlement
types, especially in Spain and France. In France, cities are almost 15 years older than
rural areas and around 10 respectively 20 years older than cities in the Netherlands
and Spain. In Spain, the opposite is true, with buildings in rural areas being older
than buildings in cities and also older than buildings in rural areas in France and the
Netherlands (see Appendix table 12).

Feature engineering To estimate building age, we utilize 119 features based on 2D
urban morphology data on buildings and street networks, developed in [23]. While [23]
developed these feature to infer building height, we hypothesize that their encoding of
the surrounding urban context, as well as the building itself, will also be predictive of
the building’s construction year. The features can be divided into groups of building-,
building block-, street-, street-based-block- and city-level features. Features describe
either the building itself, e.g., its footprint area, properties of the closest street or
intersection, e.g., betweeness centrality of the closest street, or summarize information
about urban form within a 100 or 500 m squared buffer around the building, e.g.,
average building footprint area. Table 2 provides an overview of the features used
for prediction. For a complete list of individual features including a brief description,
variable unit, and definition, if applicable, see Appendix A. For a more contextualized
description and rationale for their selection, refer to [23].

The features show several differences in the urban morphology between the Nether-
lands, France, and Spain, particularly in regards to footprint area characteristics. The
share of buildings with small footprints is largest in France, while the density of build-
ings is highest in the Netherlands. An explorative analysis and visualization of how
urban form features differ across construction periods and countries is performed in
experiment 5 (see section 3.4F, table 14 and Appendix table 26).
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Feature group Subgroup Example Count
Buildings Building’s own geometry Footprint area 10

Building’s spatial location Latitude 2
Other buildings within 100 & 500 m Mean buildings convexity within 100 m 10× 2

Building blocks Building’s own block (if any) Block elongation 10
Other blocks within 100 & 500 m Number of blocks 100 m within buffer 9× 2

Streets Closest street & intersection Distance to closest street 6
Street centrality Betweeness centrality of closest street 11
Streets & intersections within 100 & 500 m Standard deviation length streets within 100 m 6× 2

Street-based blocks Building’s street-based block Street-based block’s corners count 3
Street-based blocks within 100 & 500 m Average area street-based block within 500 m 6× 2

City level Buildings Total building footprint area 5
Blocks Number of blocks consisting of 5 to 9 buildings 4
Streets & intersections Average street lengths 3
Street-based blocks Number of street-based blocks 3

Total 119

Table 2: Overview of urban form features. Breakdown of the 2D urban morphology
characteristics used to predict building age into feature groups and subgroups. For each
subgroup the number of features and one example is provided. See Appendix A for a complete
list of individual features.

2.2 Machine learning approach
Evaluation metrics We train a supervised machine learning model using the mean
absolute error (MAE), the root mean squared error (RMSE) and the coefficient of
determination (R2) as evaluation metrics to assess the model’s ability to infer missing
building age information and generalize across regions.

Model selection While [23] found that XGBoost [39] models yield the smallest
prediction error when inferring building attributes, the majority of prior studies [11,
28–30] used Random Forest [40] models. We conduct preliminary experiments to
compare the predictive performance of XGBoost and Random Forest learners. We
focus on decision tree ensemble methods as a comparative study [41] found them to
still outperform deep learning approaches on tabular data. We find that the XGBoost
regressor achieves a 2 percentage points larger R2 for our prediction task while training
twice as fast given our computational resources (see Appendix section B). Therefore,
we utilize XGBoost for all further experiments.

Hyperparameter tuning Due to computational constraints in our experiments
(see Appendix C), we perform the hyperparameter optimization as a preliminary step
on a throw-away set of 10% of the data. The data used for any of the preliminary
experiments including hyperparameter tuning will not be reused in any of the final
experiments in order to avoid data leakage.

We utilize sklearn’s random search [42] for hyperparameter tuning with 50 itera-
tions minimizing the RMSE. We perform random 5-fold cross validation and city-wise
5-fold cross validation to account for the two major prediction use cases of this work,
local inference and regional generalization (see section 2.3). We combine the results
and select the hyperparameters, which performed best in both settings, while also
taking the trade-off between prediction performance and training time into account.
For all subsequent experiments, we select a maximal tree depth of 13 (max_depth),
1000 trees overall (n_estimators), a learning rate of 0.025 (learning_rate) and a
random subset of 90% of the features for each tree (colsample_bytree) and 50% for
each decision split (colsample_bylevel).
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As it is difficult to make an educated guess for the optimal model complexity based
on hyperparameter tuning on a subsample of the data, we verify, after conducting
all experiments, if the chosen model complexity was appropriate and how large the
potential improvement may be from performing nested cross-validation on 100% of
the data (see Appendix C).

Spatial cross-validation & autocorrelation For all experiments, we perform
5-fold cross-validation. Motivated by our use cases, local inference and regional gen-
eralization across cities and countries, we perform random cross-validation, spatial
city-based cross-validation, and spatial country-based cross-validation. An exemplary
train-test split for the different cross-validation strategies is depicted in figure 3.

An important aspect to consider when choosing an appropriate model validation
strategy, is the spatial autocorrelation of building age [29], meaning that neighbor-
ing buildings are more likely to be built around the same time than non-neighboring
buildings. Depending on the use case, we recommend to exploit these effects to im-
prove the prediction, e.g., for use cases where the age of neighboring buildings is
known (local inference), or to prevent exploitation to avoid overoptimistic generaliza-
tion estimates, e.g., for use cases where the age of neighboring buildings is not known
(regional generalization). To evaluate the meaningfulness of features, for example to
assess how well the urban morphology alone can explain building age, we also advice
controlling for spatial autocorrelation effects to avoid the learning of spurious cor-
relations. Correspondingly, we develop an additional cross-validation strategy that
minimizes the spatial autocorrelation, while not making the prediction unnecessarily
hard by having different architectural styles and urban morphology patterns in the
train and test set as it is the case for cross-country or cross-city prediction. This al-
lows predictive performance to be compared across building types, settlement types,
and regions independent of a specific use case, while not being biased by different city
sizes or different degrees of spatial clustering.

To prevent information leakage from the training to the test set due to spuri-
ous spatial autocorrelations and consequently overoptimistic generalization estimates,
neighboring buildings must not be split into training and test set. To this end, spa-
tial cross-validation methods ensure the spatial division between training and test
samples by partitioning the data into non-overlapping spatial chunks with negligible
spatial autocorrelation between them [43]. In addition, a spatial buffer between test
and training set can be enforced [44, 45]. The minimal spatial size of the chunks and
buffer depends on how far the spatial autocorrelation effect persists and what residual
is acceptable [43].

Preliminary experiments show that spatial autocorrelation of building age de-
creases strongly for the first hundred meters and then levels off after 1 km (see sec-
tion Appendix D). Consequently, we agglomeratively cluster buildings until a distance
threshold of 1 km is reached. We refer to them as neighborhoods. On average, 15
neighborhoods make up a city and each neighborhood has an average size of 2 km2. To
investigate the effect of increasing spatial autocorrelation on predictive performance,
we also test a smaller spatial cluster of buildings that we refer to as urban blocks,
i.e., buildings surrounded by drivable roads. They average one-seventh the size of
a neighborhood. While other approaches exist to obtain unbiased estimates of pre-
dictive performance for spatially autocorrelated data, e.g., probability sampling and
design-based inference [46], we choose a spatial cross-validation approach because it
is most aligned with the validation strategies dictated by our regional generalization
use cases.

2.3 Experiments
We conduct the following five experiments to answer our main research questions:
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Figure 3: Illustration of an exemplary train-test split for different cross-
validation strategies. Purple colored buildings and areas are used for model training,
green colored for testing. (A) and (B) show the footprint geometries of buildings in an area
of Ede, Netherlands. The neighborhoods (B) are determined by agglomerative clustering of
urban blocks with a maximum diameter of 1 km. GADM boundaries are used to map the
cities in the Netherlands (C) and the countries Netherlands, France, and Spain (D).
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Exp. 1 – Local inference with partial data availability To address research
question 1, we predict the construction year of buildings in areas with partial data
availability. We assess the positive impact of spatial autocorrelation on the predic-
tive performance by evaluating the model using different cross-validation techniques.
We perform random cross-validation to allow for full exploitation of spatial autocor-
relation effects between neighboring buildings. To prevent reporting overoptimistic
accuracy estimates for buildings without neighbors and to assess how well urban
morphology alone can explain the building age, we use neighborhood-based cross-
validation.

To further assess the amount of local data needed to accurately predict the con-
struction year for all other buildings in the region, and if training data from outside
the region are needed, we learn a model that utilizes 80%, 50%, 20%, or 10% of the
data from the region. We compare the prediction quality among the regional models
and with a national model that utilizes country-wide data.

To differentiate between country-specific prediction challenges and to evaluate the
effects of geographically diverse training data, we perform the experiments for each
country individually and for all countries combined.

Exp. 2 – Regional generalization To answer research question 2, we perform
city and country-based spatial cross validation with different spatial constraints. To
evaluate the generalization performance across cities, we train the model on a random
selection of cities within a country and predict in all remaining cities of the country,
performing 5-fold spatial cross-validation on a city level. We conduct the experiments
for the Netherlands, France, and Spain individually and for all three combined.

To assess if the geographic distance between buildings in the train and test set
impacts the generalization performance, we repeat the experiments, but enforce an
increasing spatial distance between the train and test set. We select a test region and
divide the cities outside the region in up to 9 groups based on their distance from the
test region (see figure 4). For each group, we train a separate model and analyze how
the prediction quality varies over spatial distance. For a detailed description of the
experimental set-up, refer to Appendix E.

To further test if it is possible to infer building age in a country where this infor-
mation is not available, by learning a model in countries where it is, we perform 3-fold
country-wise cross-validation for Netherlands, France and Spain. We train the model
on two countries and predict in the third one. This extends the previous experiment
on generalization across distances by assessing the additional challenge of national
boundaries and thus differences in cadaster data quality and architectural style.

Exp. 3 – Need for massive data To investigate research question 3, we increase
the number of training samples and quantify the impact on the prediction perfor-
mance. We primarily focus our analysis on Dutch building data as the regions are of
comparable size and exhibit a detailed and stable data quality.

We evaluate the potential of massive training data for a neighborhood cross-
validated model and our three main use cases, local inference, generalization across
cities, and generalization across countries. For cross-city and cross-country generaliz-
ing, we keep the test set fixed and only add buildings to the training set throughout
the experiment. For local inference, we perform random cross-validation. We add
buildings from one city at a time to ensure that in each iteration there are enough
local buildings that can be exploited by the model for local inference. In addition,
this ensures a smooth distribution of feature values, such as building density or street
network centrality measures, which facilitates the learning of city structures. Once
all cities from the country are utilized, we add buildings from a different country to
assess the impact of transnational training data. We run and average all experiments
across 10 iterations with different seeds to reduce the impact of the city sampling on
the result.
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Figure 4: Division of French cities into 9 groups to assess the impact of geo-
graphical distance on the generalization performance. Exemplary visualization for
the department of Allier, France. The distances used for grouping the cities are visualized
by the pink buffer rings. The cities from each group that were selected for training are
highlighted with the color indicating their distance to the test region. Each group is 50 km
further away from the test region. All highlighted cities within one distance ring have in
total around 100,000 buildings.
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Exp. 4 – Inspection of prediction results To address research question 4, we
inspect the results along six dimensions (A–F) that provide detailed perspective on
where and why the model may perform better or worse.

(A) First, we compare the predictive performance between different construction
periods. Since regression residuals are biased towards the mean, we redefine the
task as a classification problem by grouping the construction years into construction
periods (e.g., 1950–1965, see Appendix F). By doing so, we test whether old and new
buildings are indeed more difficult to predict or whether this is an inherent problem
of the chosen regression approach.

(B) In addition, we compare geographic regions defined by GADM boundaries
and settlement types according to the EU DEGURBA classification. We test the
correlation between prediction error and settlement size using Pearson’s correlation
coefficient.

(C) We also assess the challenges of predicting age of different building types.
Information on residential and certain non-residential usages, i.e., commercial, agri-
cultural, and industrial, are available in the cadaster data for France and Spain.
Residential subtypes, i.e., single-family houses, terraced houses, multi-family houses,
and apartment blocks, are estimated using a simple decision tree based on reference
values for building height, footprint area, and number of adjacent buildings for these
residential subtypes from TABULA [47] (see Appendix section G). We compare the
model performance between residential and non-residential buildings and their sub-
types in France and Spain.

(D) To follow up on a limitations of [29], which is to consider only urban blocks
where all buildings are from the same construction period, resulting in an incomplete
and biased building sample, we explore the challenge of predicting in-fill buildings.
Generally, in-fill housing refers to new buildings constructed on underused lots in
existing, older urban neighborhoods. For our experiment, we define in-fill housing
as adjacent buildings whose construction year is more than two standard deviations
above the mean of all buildings in the same urban block. See Appendix figure 21 for
an illustration of example in-fill buildings.

(E) We calculate the feature importance to investigate which urban form charac-
teristics are most informative. We calculate the relative contribution of each feature
to the prediction based on their SHAP-values [48] as suggest by [49]. We assess their
contribution individually and jointly as feature groups as defined in table 2. We val-
idate that all features capture some information about the target variable by adding
a random noise feature and testing that it has the lowest feature importance.

(F) Finally, we compare how the urban morphology, assessed by the 9 most impor-
tant urban form features, differs across countries and construction periods to explore
reasons for the differences in predictive power and generalizability.

Exp. 5 – Applicability for retrofit policies To answer research question 5,
we use the predicted construction year to estimate the heating energy demand and
savings potential from energy retrofits for all 8.7 million residential buildings in France
present in the dataset. We evaluate to what extent our inferred data can improve the
prioritization of large-scale retrofits by focusing on buildings with the highest energy
demand. Our analysis is twofold:

(A) To assess the usability of our data, we first determine how much higher the
energy savings per m2 are for a prioritized retrofit approach compared to a non-
prioritized, random approach. We compare the estimated savings potential of priori-
tization based using our inferred data and the ground truth construction year data.

(B) To further show the policy relevance of having such information at hand, we
analyze the spatial heterogeneity of retrofitting needs and discuss the potential for
targeted regional fund allocation and regional policy focus.

The energy performance of buildings is assessed based on an established energy
model developed according to EN ISO 13790. We use precalculated heating energy
estimates for specific building cohorts and different refurbishment conditions as de-
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fined by TABULA [47]. The building cohorts are differentiated according to the con-
struction period, climate region, and residential type, namely single-family houses,
terraced houses, multi-family houses, and apartment blocks. We use a simple deci-
sion tree based on building height, footprint area and number of adjacent buildings
to estimate the residential type (see Appendix section G). We focus our analysis on
building data from France, as only there do we have appropriate coverage of the
information necessary to classify buildings into residential types. In France, the en-
ergy estimates for heating are differentiated according to three climate zones (H1, H2
and H3) following French regulation, i.e., Réglementation Thermique de 2012. Given
the residential type and building location, we use our age predictions to identify the
TABULA cohort and obtain an estimate of the heating energy demand.

Figure 5: Building-level energy demand for heating in France. Depiction of the
average national heating energy demand per m2 for different residential building types and
construction periods in France according to the EN ISO 13790 compliant energy model
from TABULA [47]. Building archetypes with a heating demand above 150 kWh/m2a that
are targeted for refurbishment are highlighted by the gray box. Buildings are matched to
TABULA cohorts based on the construction year, geographic location and 2.5D shape from
the EUBUCCO dataset [33]. The prevalence of each archetype in the building stock, as
measured by total floor area, is coded by circle size.

We choose an exemplary threshold to prioritize buildings with a heating energy
demand above 150 kWh/m2a for retrofit, which we estimate to represent about 16%
of the total building stock. The buildings above the threshold correspond to single-
family houses built until 1974 (see figure 5), approximately when the relevant energy
regulations were introduced in France. To examine only the value of age information,
not the residential type classification, we consider random retrofits of only single-
family house as a second baseline for the energy savings assessment (A). We adopt a
definition of retrofit that involves upgrading the thermal envelope and the heat supply
system to an extent that is commonly realized during renovation and referred to as
energy performance level (EPL) 2 by TABULA [50].

While this analysis does not account for the variability of energy demand across
buildings from the same construction period, residential type, and climate region, it
enables to assess the value of our age predictions compared to having no or perfect
knowledge of the building age. Yet, all insights are constrained to the underlying
energy model.
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Finally, since primarily the construction period, not the precise year of construc-
tion, is relevant for energy modeling, we investigate whether a classification of the
construction period can more effectively inform retrofit policies than a regression of
the year of construction. (see Appendix section H).
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3 Results

3.1 Filling data gaps within cities is possible
With access to local information by performing random cross-validation, the regres-
sion model is able to infer missing building age with a promising accuracy. The R2

ranges from 0.63 for the Netherlands and 0.46 for France to 0.43 for Spain (see table
3). Overall, 69% of buildings in the Netherlands, 45% in France, and 41% in Spain
are predicted with an MAE of less than 10 years.

Using only regional data for training yields more accurate predictions than using
data from the entire country, with a R2 on average between 2.4 and 4.0 percentage
points larger (see figure 7 and Appendix table 14). This demonstrates that local mod-
els are appropriate and sufficient for local inference. Comparing different scenarios
of local data availability, we find that the prediction error increases only moderately
with less data (see figure 7). Between 80% and 10% of local data availability, the
mean R2 differs by 8.6 to 10.2 percentage points and the MAE by 1.5 to 2.1 in the
Netherlands, France, and Spain (see Appendix table 14).

Performing spatial cross-validation and thereby reducing the availability of nearby
buildings and preventing the exploitation of spatial autocorrelation degrades model
performance (see figure 6). When conducting neighborhood-based cross-validation,
the R2 of our national models decreases by 19 percentage points in the Netherlands,
by 5 in France and by 9 in Spain (see table 3). When performing spatial cross-
validation on smaller spatial chunks, i.e., urban blocks that are one-seventh of the
size of neighborhoods, the decline in predictive accuracy is smaller.

Further experiments demonstrate that our proposed method can also fill local data
gaps for building type and building height. Using the same urban form features, we
are able to predict type with a F1 score of up to 0.79 and height with a R2 of up to
0.77 when performing neighborhood-based cross-validation (see Appendix section I).

3.2 Generalizing across regions has limitations
The generalization performance deteriorates with increasing geographical scope. Pre-
dicting building age in unseen cities is possible, but gets more difficult the further the
cities are apart from the train region. For unseen countries, however, urban form is
no longer predictive in our experiments.

Generalization across cities yields a R2 of 0.32 for Spain, 0.38 for the Netherlands,
and 0.39 for France (see table 3). This indicates that the construction periods of
different regions are similarly manifested in the urban form, allowing the model, to
some degree, to learn in one region and predict in another. Experiments for buildings
type and height confirm this (see city cross-validation in Appendix table 9, 10 and 11).
Precisely, the R2 is between 2 and 6 percentage points lower compared to experiments
where buildings from the same city are available for training (see table 3).

In general, spatial distance between buildings used for training and buildings from
the test set negatively impacts the prediction accuracy (see figure 8). For a relatively
small training set of 100,000 buildings, generalizing over more than 250 km is not
possible in Netherlands and Spain. For larger distances the average R2 becomes
negative. We theorize that spatial distance has the same effect when more training
data are used, just at a higher level of R2.

As of now, learning in one country and accurately predicting in another country
is not possible with our model. Regardless of which countries the model is trained
on, the predictions scatter only around the mean of the distribution (see figure 6)
and the R2 never exceeds 0.2. Despite the harmonization efforts for the EUBUCCO
dataset, urban form feature distributions differ noteworthy between the countries
(see Appendix figure 25 and 26) making it difficult to generalize from one country to
another.
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Netherlands France Spain All countries
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

Random cv 10.1 16.1 0.63 16.8 23.4 0.46 17.5 24.5 0.43 16.2 22.9 0.45
Urban block cv 12.5 18.5 0.51 17.6 24.1 0.42 18.5 25.5 0.38 17.0 23.6 0.41
Neighborhood cv 14.3 19.9 0.44 18.0 24.4 0.41 19.3 26.3 0.34 17.8 24.3 0.38
City cv 15.3 20.9 0.38 18.3 24.7 0.39 19.9 26.9 0.32 18.3 24.8 0.36
Country cv 23.4 28.8 -0.18 23.8 29.5 0.13 28.6 34.7 -0.15 25.3 31.2 -0.02

Table 3: Regression model error. Summary of the mean absolute error (MAE), the root
mean squared error (RMSE) in years and the coefficient of determination (R2) of the different
cross-validation strategies. For random, urban block-based, neighborhood-based and city-
based cross-validation (cv), training and prediction is conducted in the same country or in all
countries at once. For country-based cross-validation the model was trained on two countries
to predict in the third country. The table shows the prediction result for the country used
as test set and for all countries, the average over all validation folds.

Figure 6: Increasing generalization distance amplifies the effect of old buildings
being predicted as too new and vice versa. Heatmap of a confusion matrix for binned
years of construction. True values and prediction values are partitioned into 2-year intervals.
Each row of the confusion matrix indicates the share of predictions that fall into each of the
2-year intervals. The sum over each row is 1. Higher color intensities indicate a higher
share of prediction in the bin. The diagonal line represents perfect predictions. On the axis,
the distributions of the true and predicted construction years are shown. Random, block,
neighborhood and city cross-validation (cv) were performed in the Netherlands; country
cross-validation on all three countries.
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Figure 7: 10% local data allows to fill data gaps locally. Comparison of the
prediction performance of regional models that are trained using 10%, 20%, 50%, or 80%
of the local data from the region and predict all remaining buildings. Each boxplot depicts
the R2 distribution of all regional models in one country and for a specific level of local data
availability. For 12 states in the Netherlands, 47 provinces in Spain, and 91 departments in
France results are reported. The median number of buildings per region is about 125,000.
For comparison, the prediction quality across regions of the national model evaluated by
random cross-validation is depicted as well. See Appendix table 14 for the precise R2 and
MAE values.

Figure 8: Increasing distance reduces generalization performance. Illustration
of the negative impact of increasing spatial distance between buildings from the train and
test set on prediction accuracy. Around 100,000 buildings were used for training and at
least 100,000 for testing in each distance experiment. Each experiment group represent non-
overlapping circular clusters of cities with a maximal band width of 50 km (see figure 4
for a spatial representation of the experimental setup). The mean distance of each group
is indicated on the x-axis. 9 states in the Netherlands, 55 departments in France and 24
provinces in Spain were used for validation. The reported R2 is averaged across all test
regions.
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3.3 Massive training data improves generalization performance
The generalization performance significantly benefits from additional training data,
except for local inference, which exhibits a concave performance trend (see figure 9).
Precisely, the predictive performance of local inference peaks at a R2 of 0.68 when
utilizing a training sample of ∼400,000 buildings (see Appendix table 15).

When predicting building age in unseen cities, more training data from the same
country significantly decreases the prediction error. On average, four cities were
required for training to generalize with a positive R2 in the Netherlands. The impact
of using more training data on cross-country generalization exhibits a positive trend
as well, although the explanatory power is limited even with all data.

Using training data from a different country, in this case France, as indicated by
the vertical line in figure 9, stops the positive trend in generalization performance and
partially reduces the R2. This highlights the challenges posed by national borders.
Only the age prediction of French buildings benefits from adding training data from
France.

Figure 9: Additional in-country training data improve model performance in
the Netherlands except for local inference. Visualization of the impact of increasing
the training sample size on the coefficient of determination, R2. Building data from up
to 424 dutch cities with ∼ 13,000 buildings on average are utilized for training. Once
all cities from the Netherlands are used for training, buildings from France are added to
assess the impact of additional transnational training data on the prediction. The model
performance deteriorates thereafter except for cross-country generalization. The dashed
vertical line indicates when all buildings from the Netherlands are utilized. The mean across
10 iterations with different seeds is indicated by the plotted line, the standard deviation
over all iterations by the shadowed area. Maastricht, Almelo and Ede are used as test set
for the cross-city generalization experiment; Aix-en-Provence, Rennes and Limoges for the
cross-country generalization experiment. See Appendix table 15 for the exact R2, MAE and
RMSE.
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3.4 Prediction accuracy significantly varies across construc-
tion periods and regions

A. Construction periods The regression error varies across construction periods.
Buildings built between 1960 and 1990 are predicted most accurately (MAE of 9.88
years), while accuracy deteriorates for buildings built before 1945 (MAE of 33.95
years) and after 2000 (MAE of 21.90 years) (see figure 10 and Appendix table 17).
Old buildings being predicted as too new and new buildings as too old (see figure 6).

When redefining the prediction as a classification problem, errors become more
balanced and country-specific. Buildings built before 1960 are still classified less
accurately than those built after, but to a smaller extent (6 to 19 percentage points
for 10 year bins, see Appendix table 13). Buildings constructed in the 1910s and
1940s are particularly misclassified (see Appendix figure 18), possibly due to small
sample sizes (see histogram in figure 2) and historical events like World War I and II.
Yet, in contrast to regression, prediction quality for buildings constructed after 1990
remains stable or even improves in Spain and France.

Overall, predicting old buildings is a challenging task due to the greater diversity
of historic building geometries, smaller sample sizes, and less accurate construction
date information. For instance, there are a suspicious number of buildings from 1900
compared to subsequent years: 5 times more in the Netherlands, 38 times more in
France, and 66 times more in Spain.

B. Regions & settlement types The prediction quality varies widely between
regions. Buildings in the Netherlands and northern France are predicted more ac-
curately than in southern France and Spain (see figure 11). Overall, the standard
deviation of R2 between regions is 0.08.

Comparing prediction results across settlement types shows that rural regions
exhibit the highest prediction errors with an average of 3.95 years above the country’s
overall MAE (see table 4). In the Netherlands and Spain, buildings in cities are
predicted most accurate and in France, buildings in towns. Generally, the Pearson
correlation coefficient r indicates a low, but highly significant negative correlation
between the MAE and the number of buildings per settlement, with r = −0.22 in the
Netherlands, r = −0.37 in France and r = −0.22 in Spain. This especially affects
prediction results in Spain, as its rural regions are comparatively small. For example,
69.8% have less than 1000 buildings, whereas in the Netherlands it is 11.8% and in
France 22.7%. As a result, rural regions in Spain show the highest MAE with 26.59
years and also the highest standard deviation of the MAE between them with 9.26
years (see table 4).

C. Building types Depending on the country, different building types are predicted
most accurately. In France, residential buildings are predicted more accurately than
non-residential buildings, partly due to the greater diversity and challenging feature
distributions of non-residential buildings (MAE of 17.20 years < 22.48 years, see table
16). Among the residential and non-residential subtypes, industrial buildings have the
lowest MAE, while other non-residential types are predicted worse than the average
(see Appendix table 19). In particular, annex buildings, which are the second most
common building type in France with a share of 14.4% of all buildings, significantly
increase the overall MAE. Within the residential sector, single-family and terraced
houses are predicted well, while apartment blocks are mostly predicted as too new
(see figure 12).

In Spain, urban context and construction period determine whether residential or
non-residential buildings are predicted better. In cities and until the 1980s, residential
buildings show a lower MAE, whereas in towns, rural areas, and after 1980 non-
residential buildings are predicted more accurate (see Appendix table 16 and 18). We
suppose that this can be attributed to the high predictive performance for agricultural
buildings, which are predominantly constructed in thinly or intermediately populated
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regions after 1980. Similarly, predictions are particularly accurate for apartment
blocks with a MAE of 10.9 years (9.2 years below the average). In contrast to France,
industrial buildings and terraced houses are predicted with the highest MAE.

D. In-fill housing The construction year of in-fill buildings is predicted with a
substantially higher MAE, 25.54 years in the Netherlands, 43.69 years in France, and
36.29 years in Spain, which on average is 18.06 years larger than the MAE of non
in-fill buildings. We hypothesize that since the model heavily relies on neighborhood
features for making predictions (67% in the Netherlands, 54% in France, and 49%
in Spain, see table 5), it struggles to accurately predict buildings which differ from
surrounding buildings, such as in-fill buildings.

E. Feature importance Different urban form features are most relevant in France,
Netherlands and Spain. While the distance to the closest street and footprint area
are most important for the prediction in France, the footprint area of the individual
buildings plays a negligible role in the Netherlands, instead the elongation standard
deviation of all buildings in a 100 m buffer is most predictive (see figure 13). In
Spain, besides several features describing the footprint area, the shared wall length
plays a noteworthy role in the prediction. Overall, few features are very decisive in
France and Spain, whereas in the Netherlands the feature importance is more balanced
across multiple urban form characteristics. Still, in all countries every feature utilized
captures some information. The second and third least important features, orientation
of the buildings and its urban block, are still twice as important for prediction as the
random noise feature.

An analysis of feature groups reveals that building and building neighborhood fea-
tures are most important in all three countries, accounting for 43% of the contribution
(see table 5). Further, street features are highly important (22%), especially in France
(30%). In France and Spain, the model relies similarly on neighborhood and spatially
explicit features, while in the Netherlands, spatially explicit features contribute only
33%, possibly negatively affecting predictions in heterogeneous neighborhoods.

Introducing building height and type as additional features improves the weight of
spatially explicit features and significantly enhances prediction performance. Building
height improves the R2 by 1–3 percentage points and in combination with building
type by 2–3 percentage points, depending on the country (see Appendix table 21).

F. Urban morphology The urban urban characteristics show a notable spatio-
temporal variation. Mean values of the 9 most predictive urban form features differ
significantly between countries for most construction periods (see figure 14). When
assuming normally distributed feature values, the distributions overlap on average by
71.4% between the three countries (see overlapping coefficient (OVL) in Appendix fig-
ure 26). Domestically, the built environment in Spain exhibits the largest dispersion.
Between the countries, features that capture building footprint area characteristics
differ the most (average OVL of 52.5% for StdBlockFootprintArea and 64.6% for Foot-
printArea). Analog, the importance of these features varies strongly between the three
countries. While FootprintArea contributes 5.7% to the prediction in France, in only
contributes 1.1% in the Netherlands (see table 20). Conversely, StdBlockFootprintArea
contributes 7.8% in Spain and only 1.3% in France. Consequently, these differences
in feature value distributions make it difficult to generalize to unseen countries and
may partially explain the deteriorating generalization performance.

21



Figure 10: Regression error strongly varies across construction periods. The
mean absolute error (MAE) significantly varies across construction periods; buildings con-
structed in the second half of the 20th century are predicted most accurately, whereas for
older and newer buildings the prediction accuracy deteriorates. The shaded area represents
the standard deviation around the MAE.
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MAE
Country DEGURBA n mean std
France 1 (city) 124 18.36 4.93

2 (town) 315 16.37 3.77
3 (rural) 2083 20.27 3.98
All 2725 19.72 4.29

Netherlands 1 (city) 98 14.91 4.45
2 (town) 238 15.28 4.00
3 (rural) 88 16.59 2.41
All 424 15.47 3.88

Spain 1 (city) 107 15.52 4.55
2 (town) 640 17.40 5.12
3 (rural) 3530 26.59 9.14
All 5260 24.92 9.26

Table 4: Prediction error by settlement type. Summary of the mean absolute error
(MAE) of buildings located in cities, town, and rural areas according to the EU’s DEGURBA
classification. The number of settlements per type in the respective country is indicated by
n. The mean and std column refer to the mean and standard deviation of the MAE across
all settlements of a particular type. See Appendix figure 24 for a visualization of the error
distribution per settlement type.

Figure 11: Prediction error varies across regions. The coefficient of determination
(R2) varies across countries and regions, ranging from 0.09 in Melilla, Spain to 0.55 in
Flevoland, Netherlands. See Appendix figure 23 for the spatial variation of the MAE.
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Figure 12: Prediction error differs between building types. The building type is
available in the cadaster data for more than 99% of all buildings in France and Spain. Of
those, 78.7% are residential in Spain and 82.2% in France. The remaining non-residential
building, were labeled as agricultural, industrial or commercial and service buildings. The
respective percentages are indicated in the x-axis labels for France (left) and Spain (right).
In France, we grouped annex, sports and religious buildings as others, since they are not
available in the Spanish cadaster. The majority of those (14.4%) are annex buildings. The
subtypes of residential buildings, single-family houses, terraced houses, multi-family houses,
and apartment blocks, are estimated using a simple decision tree based on available building
attributes such as height, footprint area and the number of adjacent buildings (see Appendix
section G).
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Netherlands France Spain All
Building 0.13 0.23 0.28 0.21
Building neighborhood 0.26 0.19 0.19 0.21
Building block 0.12 0.09 0.14 0.12
Building block neighborhood 0.13 0.08 0.09 0.10
Street-based block 0.01 0.01 0.01 0.01
Street-based block neighborhood 0.05 0.04 0.03 0.04
Street 0.06 0.13 0.07 0.09
Street neighborhood 0.05 0.07 0.05 0.06
Street centrality 0.09 0.10 0.05 0.08
City 0.09 0.06 0.09 0.08
Total: all building 0.39 0.42 0.47 0.43
Total: all building block 0.25 0.17 0.23 0.22
Total: all street-based blocks 0.06 0.05 0.04 0.05
Total: all street 0.20 0.30 0.17 0.22
Total: spatially explicit 0.33 0.46 0.51 0.43
Total: neighborhood & centrality & city 0.67 0.54 0.49 0.57

Table 5: Normalized feature importance by feature group. Summary of the
summed feature importance for groups of similar features as defined in table 2 for the
Netherlands, France, and Spain. Neighborhood feature groups refer to features which sum-
marize information about urban form elements within a 100 or 500 m squared buffer. Non-
neighborhood feature groups only contain spatially explicit features about specific urban
form elements, i.e., buildings, building blocks, street-based blocks, and streets. Feature im-
portance refers to the normalized, individual contribution of each feature to the prediction
according to their SHAP-values. See Appendix table 20 for the precise individual feature
contributions.

Figure 13: Different urban form features are distinguishing in France, Nether-
lands and Spain. Feature importance comparison between France (left), Netherlands
(center), and Spain (right) for the 10 most decisive features when performing neighborhood-
based cross-validation. Feature importance refers to the normalized, individual contribution
of each feature to the prediction according to their SHAP-values. The displayed range is
cropped at 1% to improve the readability. The precise feature contributions can be obtained
from Appendix table 20.
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3.5 Predictions can inform prioritization of large-scale retrofits
A. Energy savings from retrofit prioritization Using the predicted construc-
tion year to estimate the energy demand for heating and identify retrofit candidates
increases energy savings by more than 50% compared to a random retrofit strategy.
More specifically, 61.9% more energy is saved per refurbished m2 floor space when
buildings with an annual heating demand above 150 kWh/m2a are targeted compared
to a random prioritization of single-family houses (see figure 15A). Savings compared
to a random prioritization across all residential types are notably larger. With ground
truth knowledge of the construction year, projected savings of targeted retrofits in-
crease from 90.9 to 120.4 kWh/m2a. We estimate the total energy savings potential
for this strategy to be 0.0187 EJ, of which 75.5% may be saved using the inferred
building age.

These energy savings estimates are based on locally inferred data, i.e., when build-
ing age of neighboring buildings is available. Nevertheless, when using data from gen-
eralizations across cities, the energy savings are still 53.3% above the baseline. Even
if the energy modeling is informed by cross-country predictions, the savings are still
noteworthy above the baseline. This is largely due to the fact that predictions for
single-family houses in France are comparatively accurate - even when the regression
model is trained in different countries. When a classification approach is adopted
instead of a regression, the MAE of energy demand estimates can be reduced by 7%
(see Appendix section H).

Figure 15: Building age prediction improves retrofit prioritization. Results
overview of a targeted prioritization of buildings with a heating demand above 150 kWh/m2a.
(A) Energy savings per m2 of floor space for different levels of knowledge of building age:
ground truth knowledge (left), predicted age according to different cross-validation ap-
proaches (middle), and no knowledge (right). (B) Regional heterogeneity in the share of
buildings in need of retrofitting in France. (C) Illustration of accuracy in determining retrofit
needs exemplified by the city of Valence, France.
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B. Regional retrofit prioritization According to ground truth age data, pro-
nounced differences exist between regions in the share of buildings that need to be
retrofitted. Our approach can estimate this share with a MAE of 5.3 percentage
points, thus helping to focus retrofit efforts on specific regions. Figure 15B highlights
the spatial heterogeneity between regions in France according to a targeted prioriti-
zation based on the building age prediction with local data availability. The lowest
need for retrofitting exists in the south-east of France, specifically in the climate re-
gions H3 with mild winter temperatures. The greatest need is in the center of France,
where urban density is low and old single-family houses make up a large portion of
the building stock. Given the high spatial resolution, this approach can also identify
neighborhoods within cities with high retrofit need (see figure 15C).
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4 Discussion

4.1 Filling data gaps to upscale European climate policies
Methods with high spatial resolution enable climate mitigation research to overcome
generic recommendations and inform policy measures at urban, street and building
scale, while being adapted to specific contexts on the one hand and scalable to Euro-
pean and global levels on the other [6].

Our experiments demonstrate that the urban form is predictive for building age
across regions, architectural styles and settlement types. We show that the findings
of previous regional case studies generalize to the Netherlands, France and Spain
and are likely transferable to other western European countries. Further, large-scale
experiments on building height and type suggest that urban form information can be
used to predict buildings attributes in general (see Appendix section I). Our model
has the potential to serve as a scalable, low-cost data generation tool to infer missing
building attributes in existing datasets using only publicly available urban morphology
data.

When local data are available, the predictive accuracy (R2 = 0.51, see table 3) is
sufficient to inform policies at different levels, from local to European. Particularly
policies targeting residential buildings in urban areas (see Appendix table 16) can be
informed with high confidence. An important practical implication is that no large-
scale model is needed for local inference. Building age in a specific region can be
precisely inferred with just 10% of the data from the region (see figure 7).

Inferring missing building attributes in unknown regions where no local data are
available remains difficult (R2 = 0.36), especially when the regions are far away from
the training region (see figure 8). Generalization performance across distances can
be improved by additional, geographically diverse training data (see figure 9). Never-
theless, the model performance varies significantly between provinces (see figure 11).
This makes comparisons of predictive performance between regional case studies in-
conclusive, as regional differences in performance are greater than differences between
case studies in the existing literature. Therefore, we refrain from direct performance
comparisons with previous work. In order to reliably use the cross-regional predic-
tions for downstream applications, further analysis is needed to better understand the
reasons for the varying performance.

Learning building age from urban form in one country and accurately predicting
in another country is not possible with our current model. With an R2 around 0 (see
table 3), climate policies cannot be informed. Instead, to upscale climate solutions
across countries, local data in all countries are needed. Future research may evaluate
what amount of local data is required and if sparse local data from OpenStreetMap
(OSM) can be utilized in regions where no administrative data are available.

Regarding feature engineering, incorporating building height as a feature improves
the overall prediction R2 by up to 2.5 percentage points (see Appendix table 21). A
more detailed representation of 3D urban morphology could potentially yield further
benefits. While studies have demonstrated the informative nature of building facade
visual appearance [31, 32], the combination of urban morphology and visual features
remains unexplored. The high feature importance of latitude and longitude and the
spatial autocorrelation between prediction residuals suggest that a more sophisticated
encoding of spatial relations could enhance the predictive performance and reduce
misleading correlations of other features caused by the spatial proximity of buildings.
For example Space2Vec [51] and eigenvector spatial filtering (ESF) [52] could be tested
to incorporate spatial relationships explicitly as additional features and graph neural
networks (GNNs) could be tested to encode the building surroundings as a spatial
graph.
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4.2 Towards large-scale, spatially explicit energy modeling
Particularly in the EU, where 50% of the building stock was constructed before 1970,
when energy efficiency restrictions were beginning to be introduced, precise energy
modeling and the identification of old buildings is essential to the effective implemen-
tation of retrofit strategies [53]. To reach the 1.5°C goal, the current annual renovation
rates in the EU ranging from 0.4% – 1.2% have to be increased to 5% [54]. To sup-
port large retrofit strategies, such as the European Renovation Wave [55], scalable,
spatially explicit methods are needed to identify renovation candidates across the EU.

With an average mean error of above 10 years in all countries (see table 3), our
approach is yet not applicable for use cases that are very sensitive to the specific year
of construction. However, it can help scale use cases where primarily the construc-
tion period is of interest, such as energy modeling and the identification of retrofit
candidates.

Experiments in France show energy savings from large-scale retrofits may be
improved by more then 50% when age predictions are used to target old, energy-
inefficient buildings. If prediction accuracy is improved, these savings can be up to
doubled (see figure 15A). Currently, precise age prediction is more difficult for non-
residential buildings, with a few exceptions such as agricultural buildings. Particu-
larly in France, residential buildings were predicted 4.75 years more accurately than
non-residential buildings (see Appendix table 16). Therefore, energy savings from pri-
oritizing non-residential retrofits based on our predictions are likely smaller. Within
the residential sector, our analysis suggests that single-family houses can most reliably
be targeted by EU-level retrofit measures using our methodology (see Appendix table
19). In Spain, apartment blocks can be targeted as well with very high accuracy.
For infill housing, the model performance deteriorates. However, since they are by
definition newer than the buildings surrounding them, this is less consequential as
they are not the first candidates for energy retrofits.

Furthermore, our approach can help to identify regional clusters of buildings in
need of refurbishment. A spatial analysis of France shows that the share of energy-
inefficient buildings differs up to a factor of 5 between regions (see figure 15C). Here,
our approach can help focus policy efforts and fund allocation on regions with high
refurbishment needs. A particular value is that the spatially explicit modeling of
building energy demand allows for assessment and prioritization of retrofit needs at
any spatial resolution, i.e., at building, neighborhood, city, or regional level.

Since the regression approach is biased towards the mean and overestimates the
age of old buildings and underestimates the age of new buildings (see figure 6), we
recommend testing a classification approach tailored to residential buildings and the
age classes required for the specific use case. Our experiments show that the MAE of
energy estimates can be reduced by 7% using classification (see Appendix section H)
and suggest that this may further improve prioritization of large-scale retrofit efforts.

While this highlights the enormous potential for decarbonizing the building sector,
we acknowledge that all of our results are constrained to the underlying energy model.
As we have no actual data on wall materials and thermal transmittance, and only
consider 4 residential construction types, we call for future research to validate and
refine our results with more detailed energy models.

4.3 Tear down national borders (in the data)
Harmonized and transnational data infrastructure is required to enable global urban
climate science [5]. The lack of standardization, quality assurance, and availability of
data poses a major challenge to comparing climate risks and policies between cities.
Researchers, [5, 56–58], have repeatedly appealed for the development of global urban
science, for which a harmonized data foundation is key. The EUBUCCO dataset [33]
provides a starting point to enable studies like this with ideally consistent data quality.

Yet, we find that national borders in the cadaster data predetermine and limit the
possibilities of cross-country age prediction. Our experiments show that generalizing
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across regions is possible, but not across national borders with our current approach
(see figure 6). For local inference, regional generalization (see table 3), and our
experiment on additional training data (see figure 9) the prediction accuracy drops
noteworthy when using transnational data compared to using only data from a single
country. Examining the results indicates that our model relies on different urban form
characteristics to predict building age in different countries (see table 5 and figure 13).
We find that not only the predictiveness but also the value distributions of urban
form characteristics differ significantly between the countries (see Appendix figure 25
and 26). While the urban morphology naturally differs between the countries, we
suppose that this effect is amplified and biased by inconsistent data acquisition and
preparation.

Inspection of the cadaster datasets reveals multiple discrepancies that could be
harmonized. Data sources deal differently with missing data or data uncertainty.
In Spain, for instance, the year of construction is estimated to the nearest decade
or century, resulting in strong country-specific noise. Further, we notice different
spatial granularity in terms of how an individual building is defined and whether
adjacent built structures, e.g., annexes, are considered to be the same building or
separate ones. In Spain, the average footprint area of buildings for some periods is 50%
larger than in France and the Netherlands. In France, annex buildings are considered
individual buildings with a distinct non-residential type. In general, building types
are inconsistently defined and the resulting distributions of building types indicate
conspicuous variations, e.g., 60 times more agricultural buildings in Spain than in
France. Thus, harmonization of data quality and spatial resolution of the building
stock may substantially help for reliable cross-country comparisons of urban climate
solutions, policy advice and policy evaluation in the future.

5 Conclusion
Spatially explicit data that are publicly available at scale are the foundation to mov-
ing beyond generic climate recommendations and providing fine-grained solutions for
decarbonizing cities. Since the year of construction of buildings is central to energy
modeling, we developed a scalable method that is able to predict missing building
attributes in available administrative data within different countries using only open
urban morphology data, enabling large-scale energy modeling of the building stock
with high spatial resolution.

We find that filling data gaps within known cities is possible with a MAE of
9.6 years in the Netherlands, 15.8 years in France, and 16.7 years in Spain. While
higher local data availability improves the prediction, 10% are sufficient to infer the
remaining 90% comparatively accurately, with an average MAE ranging from 11.0
years in the Netherlands to 20.0 years in Spain. Across all regression experiments, the
best predictive performance is achieved for residential buildings constructed between
1960 and 1990 in dense urban areas.

Generalizing across regions is more difficult. The further apart the train and
test region are, the stronger the effect. For predictions across cities, the R2 is 7
to 25 percentage points lower compared to predictions with local data availability.
Though, this effect is mitigated by larger and more diverse training data. Yet, when
trying to generalize across national borders, urban form is no longer predictive in our
experiments. We find that the feature value distributions of urban form characteristics
differ significantly between countries, making it very difficult to train in one country
and predict in another. In parts, this is the result of inconsistent data sources. To
foster global urban climate science, data harmonization and standardization between
countries must be improved.
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Appendix

A Complete feature list
The following list contains all features used in this study with their variable name,
unit, short description and, when relevant, their definition and source. For a more
contextualized description and rationale for their selection, refer to [23].

Building features

Building geometry

1. Area of the building’s footprint. Unit: squared meter. Variable name:
FootprintArea

2. Perimeter of the building’s footprint. Unit: meter. Variable name: Perimeter

3. Anisotropy index. Definition: the ratio between the area of the building foot-
print and the area of the circumscribed circle. Unit: x ∈ [0, 1]. Source: [59].
Variable name: Phi

4. Length of the longest axis of the building footprint. Definition: Axis is defined
as a diameter of minimal circumscribed circle around the convex hull. Unit:
meter. Source: [60]. Variable name: LongestAxisLength

5. Elongation of the minimum bounding box around the building footprint. Unit:
x ∈ [0, 1]. Source: [60]. Variable name: Elongation

6. Convexity of the footprint. Definition: Area of the footprint divided by the area
of the convex hull around the footprint. Unit: x ∈ [0, 1]. Source: [60]. Variable
name: Convexity

7. Orientation of the footprint. Definition: orientation of the longext axis of bound-
ing rectangle in range 0 - 45. It captures the deviation of orientation from
cardinal directions. Unit: degree. Source: [60]. Variable name: Orientation

8. Number of corners of the footprint. Unit: count. Source: [60]. Variable name:
Corners

9. Number of buildings directly adjacent to the building. Unit: count. Variable
name: CountTouches

Building location

1. Latitude of building’s location ranging from -90 to 90. Unit: degree. Variable
name: lat

2. Longitude of building’s location ranging from -180 to 180. Unit: degree. Vari-
able name: lon

Buildings within 100 and 500 m buffer

1. Standard deviation of building footprints within 100 & 500
m around the building. Unit: x ∈ [0, 1]. Variable name:
std_orientation_within_buffer_{100,500}

2. Average orientation of building footprints within 100 & 500
m around the building. Unit: x ∈ [0, 1]. Variable name:
av_orientation_within_buffer_{100,500}

37



3. Standard deviation of the convexity of building footprints within 100
& 500 m around the building. Unit: x ∈ [0, 1]. Variable name:
std_convexity_within_buffer_{100,500}

4. Average convexity of building footprints within 100 & 500 m around the building.
Unit: x ∈ [0, 1]. Variable name: av_convexity_within_buffer_{100,500}

5. Standard deviation of the elongation of buildings footprints within 100
& 500 m around the building. Unit: x ∈ [0, 1]. Variable name:
std_elongation_within_buffer_{100,500}

6. Average elongation of buildings footprints within 100 & 500
m around the building. Unit: x ∈ [0, 1]. Variable name:
av_elongation_within_buffer_{100,500}

7. Standard deviation of building footprints area within 100 & 500 m
around the building. Unit: squared meters. Variable name:
std_footprint_area_within_buffer_{100,500}

8. Average building footprints area within 100 & 500 m around
the building. Unit: squared meters. Variable name:
av_footprint_area_within_buffer_{100,500}

9. Total building footprints area within 100 & 500 m around the building. Unit:
squared meters. Variable name: total_ft_area_within_buffer_{100,500}

10. Number of buildings within 100 & 500 m around the building. Unit: counts.
Variable name: buildings_within_buffer_{100,500}

Block features

Block geometry

1. Average footprint area of buildings in the block. Unit: squared meter. Variable
name: AvBlockFootprintArea

2. Standard deviation of footprint areas of buildings in the block. Unit: squared
meter. Variable name: StdBlockFootprintArea

3. Total footprint of the block. Unit: squared meters. Variable name:
BlockTotalFootprintArea

4. Number of buildings in the block. Unit: count. Variable name: BlockLength

5. Total perimeter of the block. Unit: meters. Variable name: BlockPerimeter

6. Length of the longest axis of whole block footprint. Unit: meters. Variable
name: BlockLongestAxisLength

7. Elongation of the minimum bounding box around the whole block footprint.
Unit: x ∈ [0, 1]. Variable name: BlockElongation

8. Convexity of the whole block footprint. Unit: x ∈ [0, 1]. Variable name:
BlockConvexity

9. Orientation of the whole block footprint. Unit: degree. Variable name:
BlockOrientation

10. Number of corners of the whole block footprint. Unit: count. Variable name:
BlockCorners

Blocks within 100 and 500 m buffer
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1. Standard deviation blocks’ orientation within 100 & 500 m
around the building. Unit: degrees. Variable name: std_block
orientation_within_buffer_{100,500},

2. Average blocks’ orientation within 100 & 500 m around the building. Unit:
degrees. Variable name: av_block_orientation_within_buffer_{100,500}

3. Average individual building footprint area in blocks within 100 & 500
m around the building. Unit: squared meters. Variable name:
av_block_av_footprint_area_within_buffer_{100,500}

4. Standard deviation block total footprint area within 100 & 500 m
around the building. Unit: squared meters. Unit: Variable name:
std_block_footprint_area_within_buffer_{100,500}

5. Standard deviation block average footprint area within 100 & 500 m
around the building. Unit: squared meters. Unit: Variable name:
std_block_av_footprint_area_within_buffer_{100,500}

6. Average of the block total footprint area within 100 & 500 m
around the building. Unit: squared meters. Variable name:
av_block_footprint_area_within_buffer_{100,500}

7. Standard deviation of building count in blocks within 100 &
500 m around the building. Unit: count. Variable name:
std_block_length_within_buffer_{100,500}

8. Average building count in blocks within 100 & 500 m around the building. Unit:
count. Variable name: av_block_length_within_buffer_{100,500}

9. Number of blocks within 100 & 500 m around the building. Unit: count. Vari-
able name: blocks_within_buffer_{100,500}

Street features

Closest street & intersection

1. Openness of the closest street to building. Definition: proportion of the street
where buildings are or not present on the sides of the street. Unit: x ∈ [0, 1].
Source: [60]. Variable name: street_openness_closest_road

2. Standard deviation of the width of the closest street to the building. Def-
inition: Width is defined here as the average distance between buildings
on both sides of the street. Unit: meters Source: [60]. Variable name:
street_width_std_closest_road

3. Average width of the closest street to the building. Unit: meters Source: [60].
Variable name: street_width_av_closest_road

4. Length of the closest street to the building. Unit: meters. Variable name:
street_length_closest_road

5. Distance between the building and the closest street. Unit: meters. Variable
name: distance_to_closest_road

6. Distance between the building and the closest intersection. Unit: meters. Vari-
able name: distance_to_closest_intersection

Street centrality
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1. Local closeness centrality for the closest street to the building. Definition: Local
closeness for a radius of 500 m around each node. Value for one edge/street are
averages of the values at the two nodes/intersections. Unit: Variable name:
Unit: x ∈ [0, 1]. Source: [60]. street_closeness_500_closest_street

2. Betweeness centrality of the closest street to the building. Unit: x ∈ [0, 1].
Source: [60]. Variable name: street_betweeness_global_closest_road

3. Global closeness centrality of the closest street to the building. Unit: x ∈ [0, 1].
Source: [60]. Variable name: street_closeness_global_closest_road

4. Average local closeness centrality of the streets intersecting a 100 & 500
m buffer around the centroid of the building. Note: 500 m radius for
the closeness centrality. Unit: x ∈ [0, 1]. Source: [60]. Variable name:
street_closeness_{100,500}_av_inter_buffer_{100,500}

5. Largest local closeness centrality of the streets intersecting a 100 & 500
m buffer around the centroid of the building. Note: 500 m radius for
the closeness centrality. Unit: x ∈ [0, 1]. Source: [60]. Variable name:
street_closeness_{100,500}_max_inter_buffer_{100,500}

6. Average betwenness centrality of the streets intersecting a 100 & 500 m buffer
around the centroid of the building. Unit: x ∈ [0, 1]. Source: [60]. Variable
name: street_betweeness_global_av_inter_buffer_{100,500}

7. Largest betwenness centrality of the streets intersecting a 100 & 500 m buffer
around the centroid of the building. Unit: x ∈ [0, 1]. Source: [60]. Variable
name: street_betweeness_global_max_inter_buffer_{100,500}

Streets & intersections within 100 and 500 m buffer

1. Standard deviation of the width of the streets intersecting a 100 & 500 m buffer
around the centroid of the building. Unit: meters Source: [60]. Variable name:
street_width_std_inter_buffer_{100,500}

2. Average width of the streets intersecting a 100 & 500 m buffer around
the centroid of the building. Unit: meters Source: [60]. Variable name:
street_width_av_inter_buffer_{100,500}

3. Standard deviation length of streets within a 100 & 500 m buffer
around the centroid of the building. Unit: meters. Variable name:
street_length_std_within_buffer_{100,500}

4. Average length of streets within a 100 & 500 m buffer around
the centroid of the building. Unit: meters. Variable name:
street_length_av_within_buffer_{100,500}

5. Total length of streets within a 100 & 500 m buffer around
the centroid of the building. Unit: meters. Variable name:
street_length_total_within_buffer_{100,500}

6. Intersection count within a 100 & 500 m buffer around the
centroid of the building. Unit: count. Variable name:
intersection_count_within_buffer_{100,500}

Street-based block features

Street-based block, own block

1. Anisotropy index of the street-based block in which the building is. Unit: Unit:
x ∈ [0, 1]. Variable name: street_based_block_phi
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2. Area of the street-based block in which the building is. Unit: squared meters.
Variable name: street_based_block_area

3. Number of corners of the street-based block in which the building is. Unit:
squared meters. Variable name: street_based_block_corners

Street-based blocks within 100 and 500 m buffer

1. Standard deviation of the street-based blocks intersecting a 100 & 500 m
buffer around the centroid of the building. Unit: degrees Variable name:
street_based_block_std_orientation_inter_buffer_{100,500}

2. Standard deviation of the anisotropy index of the street-based
blocks intersecting a 100 & 500 m buffer around the centroid
of the building. Unit: Unit: x ∈ [0, 1]. Variable name:
street_based_block_std_phi_inter_buffer_{100,500}

3. Average anisotropy index of the street-based blocks intersecting a 100 & 500
m buffer around the centroid of the building. Unit: Unit: x ∈ [0, 1]. Variable
name: street_based_block_av_phi_inter_buffer_{100,500}

4. Standard deviation of the area of the street-based blocks intersecting a 100 & 500
m buffer around the centroid of the building. Unit: squared meters. Variable
name: street_based_block_std_area_inter_buffer_{100,500}

5. Average area of the street-based blocks intersecting a 100 & 500 m buffer
around the centroid of the building. Unit: squared meters. Variable name:
street_based_block_av_area_inter_buffer_{100,500}

6. Number of the street-based blocks intersecting a 100 & 500 m buffer
around the centroid of the building. Unit: count Variable name:
street_based_block_number_inter_buffer_{100,500}

City level features

City level

1. Total of building footprint area in the city. Unit: squared meters. Variable
name: total_buildings_footprint_city

2. Total number of buildings in the city. Unit: count. Variable name:
total_buildings_city

3. Average building footprint area in the city. Unit: squared meters. Variable
name: av_building_footprint_city

4. Standard deviation of the building footprints area in the city. Unit: squared
meters. Variable name: std_building_footprint_city

5. Number of detached buildings in the city. Unit: count. Variable name:
n_detached_buildings

6. Number of blocks from 2 to 4 buildings in the city. Unit: count. Variable name:
block_2_to_4

7. Number of blocks from 5 to 9 buildings in the city. Unit: count. Variable name:
block_5_to_9

8. Number of blocks from 10 to 19 buildings in the city. Unit: count. Variable
name: block_10_to_19

9. Number of blocks of 20 or more buildings in the city. Unit: count. Variable
name: block_20_to_inf
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10. Total intersections count in the city. Unit: count. Variable name:
intersections_count

11. Total street length in the city. Unit: meters. Variable name:
total_length_street_city

12. Average street length in city. Unit: meters. Variable name:
av_length_street_city

13. Number of street based blocks in the city. Unit: count. Variable name:
total_number_block_city

14. Average area street-based blocks in the city. Unit: squared meters. Variable
name: av_area_block_city

15. Standard deviation of the street-based blocks in the city. Unit: squared meters.
Variable name: std_area_block_city

B Model selection
While [23] found that XGBoost [39] models yield the smallest prediction error when
inferring building attributes, the majority of prior studies [11, 28–30] used Random
Forest models [40]. Therefore, we conduct preliminary experiments to compare the
prediction performance of different ensemble learning methods: XGBoost, Random
Forest, and AdaBoost [61]. We utilize a throw-away set of 10% of the data (simi-
larly to hyperparameter tuning (see section 2.2) to avoid data leakage. We define a
search space for each of the three algorithms and perform nested 5-fold nested cross-
validation with a random search across 20 hyperparameter combinations. The outer
cross-validation loop ensures that we evaluate the tuned model on all samples of the
data by performing a random hyperparameter search for each fold. This may yield
different optimal hyperparameters for each fold. For each of the 20 combinations of
the random search, the inner cross-validation loop reports an averaged error across
all inner folds, which is used to robustly compare the hyperparamter combinations.
Finally, we report the averaged prediction error across all outer folds and use it to
compare XGBoost, Random Forest, and AdaBoost.

The results are depicted in table 6. We find that XGBoost outperforms Random
Forest by 2 percentage points in terms of R2 for regression the construction year in
the Netherlands. Further, the fit time of the optimal Random Forest model is more
than 2 times slower than the optimal XGBoost model. Therefore, we utilize XGBoost
for all further experiments.

Model MAE RMSE R2 Fit time [s]
AdaBoost 18.5 24.0 0.211 409
RandomForest 9.2 17.0 0.602 722
XGBoost 8.9 16.7 0.620 281

Table 6: Model comparison between Random Forest, AdaBoost, and XGBoost
for regression. Summary of the mean absolute error (MAE), the root mean squared error
(RMSE) in years and the coefficient of determination (R2) of different models. Further, the
training time in seconds is reported. 5-fold nested cross-validation with a random search
over 20 hyperparameter combinations was performed for all models.

C Hyperparameter tuning
It is difficult to make an educated guess for the optimal hyperparameters based on
hyperparameter tuning on a subsample of data because the optimal model complexity
varies with the amount of training data. More training data can lead to further
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insights, as the model can detect correlations that were indistinguishable from noise
with less training data. Yet, a more complex model might be required to capture
those correlations.

Therefore, the best practice is to perform nested cross-validation, which allows to
tune the hyperparameters in the inner loop on almost the full dataset without the risk
of introducing data leakage and at the same time, robustly assess the generalization
capacity in the outer loop. However, to due computational limitations it was not suit-
able to perform nested cross-validation for every experiment. Since the training time
of the top performing hyperparameter combinations is around 1000 seconds for regres-
sion and 2,500 seconds for classification with 10 year bins, conducting 5-fold nested
cross-validation with a random search across 20 hyperparameter combinations, each
experiment iteration would take more than 5 days. For classification each iteration
would even take up to 15 days.

To retrospectively evaluate if a more complex model could have significantly im-
proved the prediction performance, we tested the impact of different maximal tree
depths on the model performance using all data from the Netherlands. We reused the
other hyperparameters from the initial hyperparameter tuning (n_estimators=1000,
learning_rate=0.025, colsample_bytree=0.9 and colsample_bylevel=0.5) and
kept them stable across all iterations.

The experiment shows that the optimal max_depth for Netherlands is 16 (see
Appendix figure 16). Yet, the decrease in RMSE compared to a max_depth of 13 is
below 0.2 years. We conclude that nested cross-validation can potentially improve
the prediction results across all experiments which utilize more than the 1 million
buildings we used in our preliminary experiments. Though, the trade-off between
prediction performance and training time must be considered, since increasing model
complexity by raising the maximum tree depth is accompanied by an exponential
increase in training time. Analyzing the bias-variance trade-off shows that the model
starts to overfit above a max_depth of 16 with the variance term dominating the test
error.

Figure 16: Impact of tree depth on prediction performance Visualization of hyper-
parameter tuning results for the xgboost parameter max_depth using all building data from
the Netherlands. A max_depth of 16 yields the lowest prediction error (RMSE=15.24). Yet,
there is a trade-off between prediction performance and training time, which is determined
by the complexity of the model.
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D Spatial autocorrelation
To assess the level of spatial autocorrelation present in the data, we use Moran’s I
[62], a measure of spatial autocorrelation ranging from -1 to 1, where 0 represents
a perfectly random spatial distribution with no spatial autocorrelation and values
close to 1 or -1 respectively represent strong spatial clustering or spatial dispersion
of similar samples [63]. We find that building age exhibits a high level of spatial
clustering; Moran’s I for immediate neighbors (k=4) is around 0.6 and for all close-
by buildings (distance < 100 m) between 0.3 in the Netherlands and 0.4 in France.
Moran’s I decays over distance as depicted in figure 17, but for many cities some
residual remains even over 1 km distance. Yet, it is comparatively small with a
Moran’s I below 0.1 in France and Spain and below 0.05 in the Netherlands in the vast
majority of cities. We argue that this sufficiently mitigates overoptimistic prediction
estimates caused by spatial autocorrelation between nearby buildings. Similarly, to
the phasing out of spatial autocorrelation after 1km in most cities, we find that the
decrease in prediction performance levels off when increasing the distance threshold
of neighborhood clustering to 1km.

Other geometric building attributes like height, perimeter or footprint area also
exhibit patterns of spatial autocorrelation but to a lesser degree (Moran’s I between
0.1 and 0.3 for a distance of 100 m).

Figure 17: Spatial autocorrelation of building age decreases over distance. Cor-
relogram illustrating the decline in spatial autocorrelation of building age over distance for
the Netherlands, France and Spain. The spatial autocorrelation is measured by Moran’s I
and is calculated city-wise. The line depicts the average Moran’s I for a random selection
of 25 cities per country with at least 5,000 buildings. The shaded area depicts the standard
deviation around the mean. We determine the spatial autocorrelation for 10, 25, 50, 100,
250, 500, 750, 1000, 1500, and 2000 m bins. We always consider buildings located between
two distances in one iteration, e.g., we consider buildings between 50 and 100 m distance
and afterwards buildings between 100 and 250 m distance.
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E Experimental setup: Impact of geographical distance on
generalization performance

To assess if the geographic distance between buildings in the train and test set im-
pacts the generalization performance, we evaluate the model using city-based cross-
validation while enforcing an increasing spatial distance between the train and test
set. We select a test region and divide the cities outside the region in up to 9 groups
based on their distance from the test region (see figure 4). For each group we train
a separate model and compare how the prediction quality changes over spatial dis-
tance. The closest group of cities is at least 50km and at most 100km away from the
test region. For every group the distance increases by 50km, so that cities from the
ninth group are between 450km and 500km away from the test set. Due to the size
of the Netherlands the most distant group is 250km to 300km away. We consistently
utilize around 100,000 buildings from randomly selected cities within each group for
training. We don’t split up cities, but always use all buildings from a city to allow
for learning city structures.

We repeat this experiment for every province in the country which has at least
100,000 buildings by using it once as the test region. For each distance group, we
report the average over all provinces to get a robust estimate of the impact of spatial
distance on generalization performance that is not biased by the geography of the test
region.

F Classification approach
Motivation Motivated by the finding that the regression residuals are heavily bi-
ased towards the mean when prediction building age, we redefine the task as a multi-
class classification problem as previously done by [28, 29]. We group the construction
years into construction periods (e.g., 1950–1965) to test whether buildings at the
periphery of the distribution are indeed more difficult to predict or whether this is
primarily a methodological problem with the regression approach.

Methods Analog to our regression approach, we utilize XGBoost’s implementation
of a gradient boosted tree ensemble classifier and perform neighborhood-based cross-
validation to control for spatial autocorrelation effects as described in section 2.2. As
our primary evaluation metric, we use the Matthews Correlation Coefficient (MCC),
as it is considered a good compromise among discriminancy, consistency, and coherent
behaviors with varying number of classes and imbalanced datasets [64]. An MCC of
+1 represents a perfect prediction, 0 a random prediction, and −1 indicates complete
disagreement between predictions and true values. To compare the predictive per-
formance of different classes and identify construction period specific challenges, we
further report the class sensitivities. Since different use cases require different gran-
ularities of construction periods, we test three sets of different construction periods:
uniformly distributed classes spanning 5 years, 10 years, and 20 years.

Due to the imbalanced, skewed distribution of our target variable, the construction
year, discretizing it into construction periods as a preprocessing step for classification
yields an imbalanced class distribution. To mitigate the negative effect of class imbal-
ance on the predictive accuracy of minority classes and thus make class sensitivities
more comparable, we pass sample weights to the classifier which are inversely propor-
tional to the class size. We also test Synthetic Minority Oversampling (SMOTE) [65],
Adaptive Synthetic Sampling (ADASYN) [66], random majority class under-, and
minority class oversampling, yet sample weights yield slightly more accurate results
in terms of the MCC (see Appendix table 7).

Results The best classification results are achieved when performing random cross-
validation, especially in the Netherlands with a MCC between 0.73 and 0.76 depend-
ing on the bin size used for classification (see Appendix table 8). Using larger bins
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Strategy MCC F1 Recall <1960 Recall >1990
undersampling 0.653 0.614 0.592 0.663
oversampling 0.714 0.664 0.610 0.719
SMOTE 0.715 0.665 0.582 0.726
ADASYN 0.715 0.663 0.576 0.734
baseline 0.715 0.665 0.548 0.726
sample weights 0.716 0.667 0.616 0.722

Table 7: Comparison of resampling strategies for imbalanced classification. Sum-
mary of classification results using Matthews Correlation Coefficient (MCC), F1 score, and
the average class recall across multiple minority classes, i.e. classes containing buildings
constructed before 1960 and classes containing buildings constructed after 1990. 5-fold
cross-validation is performed. As resampling strategies, Synthetic Minority Oversampling
(SMOTE) [65], Adaptive Synthetic Sampling (ADASYN) [66], random majority class un-
dersampling, and minority class oversampling, and sample weights, with weights inversely
proportional to the class size, are compared. The baseline strategy refers to a classifier,
which does not mitigate class imbalance.

increases the MCC at the expense of lower granularity. Analog to the regression ap-
proach, the prediction performance decreases when performing spatial cross-validation
and thereby reducing the exploitation of spatial autocorrelation. In contrast to re-
gression, the prediction quality does not deteriorate for old and new buildings (see
Appendix figure 18). Specifically, the detection of new buildings benefits from the
classification approach. Also, historic events such as World War I and II are more
visible.

G Determination of residential building types
We classify residential buildings into subtypes using reference attributes from TAB-
ULA [47]. We employ a simple decision tree (see Appendix figure 19) which classifies
the buildings into the following types:

• Single-Family House (SFH)

• Multi-Family House (MFH)

• Terraced House (TH)

• Apartment Block (AB)

The decision splits are determined using reference values for building attributes from
TABULA for the four buildings types. For example, the reference footprint area
is significantly larger than 300m2 for almost all apartment blocks and multi-family
houses in Spain and France (besides MFH from France constructed between 1975 and
1981 and before 1914) and smaller for single-family and terraced houses (besides SFH
from Spain constructed between 1937 and 1959).

H Regression vs. classification for energy modeling
Motivation For use cases where primarily the construction period (e.g., 1950–1965)
is of interest, classification is a possible alternative to regression. Particularly for
energy modeling, where the construction period is usually sufficient, but higher sensi-
tivities for certain construction periods are more important than others, e.g., around
the implementation date of energy regulations, evaluating which approach leads to
lower errors in energy demand estimates when using the predicted construction period
as input for energy modeling is essential. It is also important given that regression
predictions are biased towards the mean resulting in unbalanced residuals for early
and late construction periods (see figure 6). Yet, previous work did not compare the
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Netherlands France Spain
5 y. 10 y. 20 y. 5 y. 10 y. 20 y. 5 y. 10 y. 20 y.

Random cv class. 0.73 0.75 0.76 0.37 0.42 0.48 0.36 0.39 0.45
reg. 0.25 0.38 0.50 0.08 0.15 0.25 0.06 0.13 0.23

Block cv class. 0.44 0.52 0.58 0.22 0.30 0.39 0.20 0.26 0.35
reg. 0.16 0.27 0.38 0.07 0.13 0.22 0.05 0.10 0.19

Neighborhood cv class. 0.21 0.33 0.44 0.17 0.26 0.35 0.13 0.18 0.27
reg. 0.09 0.18 0.28 0.06 0.12 0.21 0.04 0.09 0.16

City cv class. 0.17 0.28 0.39 0.15 0.24 0.33 0.09 0.14 0.23
reg. 0.08 0.14 0.24 0.05 0.11 0.20 0.03 0.08 0.14

Table 8: MCC of classification and discretized regression predictions. Summary
of Matthews Correlation Coefficient (MCC) for the Netherlands, France, and Spain and 5,
10, and 20 year (y.) bins. For each cross-validation (cv) strategy, the MCC is calculated for
the classification (class.) and discretized regression (reg.) results.

Figure 18: Classification recall is similar across construction periods. Classifying
the construction year using 5 year bins (top), 10 year bin (middle), or 20 year bins (bottom)
results in comparable prediction errors over time, except for predictions around 1900, World
War I and II. Yet, on average buildings constructed after 1960 are predicted more accurately.
The sensitivity of each class is plotted for the mean class year in the graph, e.g., class 1900–
1920 is plotted for 1910. 5-fold neighborhood-based cross-validation was performed. Sample
weights were passed to the classifier to mitigate the class imbalance.
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Figure 19: Decision tree for residential building types The number of neighbors
corresponds to the number of adjacent buildings whose geometry touches. If the number of
floors was not available in the cadastral data, it was estimated by dividing the height of the
building by 2.5m, the minimum height of a floor, and then rounding down.

predictive performance of regression and multi-class classification but focused either
on regressing the specific construction year [11, 30, 32] or classifying the construction
period [28, 29, 31].

Methods The classification is conducted as described in Appendix section F. Ad-
ditionally, to compare the predictive performance of regression and classification, we
discretize the continuous regression predictions into construction periods and cal-
culate classification metrics for these. To test how the error propagates when the
predictions are further used, we perform an application-specific comparison for en-
ergy modeling. Instead of using a full energy model, we use precalculated energy
estimates for heating for specific residential building types and construction periods
from TABULA [47], equivalent to experiment 5 on the applicability for large-scale
retrofitting (see section 2.3). The energy model is designed according to EN ISO
13790. We use building data from France, as we have the necessary information to
classify buildings into residential types. See Appendix section G for a more detailed
explanation of how residential building types are determined, which form the basis for
assigning TABULA energy metrics. As classes for classification, we use the predefined
construction periods from TABULA for the French building stock. We compare the
derived heating demand estimate between the regression and classification model in
terms of the relative difference in the MAE of energy demand estimates.

Results When comparing classification and regression, we find that the predictive
performance of classification is more balanced across construction periods than that
of regression (see Appendix figure 20). The overall MCC of classification is also
noteworthy larger than that of regression, averaging between 1.7 and 3.7 times across
all countries, depending on bin size (see Appendix table 8). For energy modeling based
on construction periods, we find that classification slightly outperforms regression.
Precisely, classification leads to a 7% smaller mean absolute error in the heating
demand estimates when using TABULA construction periods and TABULA building
energy information. The fact that the difference between classification and regression
is larger according to the MCC than according to the MAE of energy estimates, can
be attributed to the fact that the order of classes matters for energy modeling. For
example, an energy estimate is likely to be less incorrect when assigning a building
constructed in 1985 to the 1990s compared to assigning it to the 1920s. Therefore,
when predicting buildings age, it is essential to always compare classification and
regression in terms of the final use case metrics, rather than general classification
metrics.
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In summary, our experimental results indicate that classification should be con-
sidered as an alternative to regression when only the construction period and not the
specific year is needed. For energy modeling, our findings suggest that it is likely to
yield more accurate results. For use cases where the prediction accuracy of buildings
at the periphery of the distribution is important, classification outperforms regression.

Figure 20: Classification yields more balanced prediction errors over the con-
struction periods Confusion matrix of model sensitivity for classification (left) and dis-
cretized regression (right) results for equally-sized 10 year bins in the Netherlands. Perform-
ing classification results in balanced prediction residuals, whereas the regression residuals
are biased towards the mean. Thus, classification particularly outperforms regression for
buildings constructed before 1940 and after 2000. Overall, the MCC of the classification
results (0.33) is larger than the MCC of the discretized regression results (0.18). 5-fold
neighborhood-based cross-validation was performed. Sample weights were passed to the
classifier to mitigate the class imbalance.

I Prediction of other building attributes
To assess if urban form characteristics are a robust source of information for predicting
buildings attributes in general, we repeat the experiments on local inference (Exp. 1)
and regional generalization (Exp. 2) of building construction year, as described in
section 2.3), for building height and type.

Building type prediction We chose Matthews Correlation Coefficient (MCC) as
our primary evaluation metric instead of the overall accuracy, which can be mis-
leading for multi-class classification, because it poorly copes with imbalanced classes
and cannot distinguish among different misclassification distributions. The MCC is
considered a good compromise among discriminancy, consistency, and coherent behav-
iors with varying number of classes, imbalanced datasets, and randomization [64]. An
MCC of +1 represents a perfect prediction, 0 a random prediction, and −1 indicates
complete disagreement between predictions and true values. To assess the prediction
performance of different classes, identify construction period specific challenges, and
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France Spain
Cross-validation MCC F1 Recall residential MCC F1 Recall residential
Random cv 0.605 0.800 0.892 0.623 0.808 0.883
Block cv 0.595 0.794 0.887 0.581 0.787 0.873
Neighborhood cv 0.593 0.793 0.888 0.564 0.780 0.875
City cv 0.579 0.785 0.880 0.507 0.751 0.861

Table 9: Binary building type classification error. Summary of Matthews Correlation
Coefficient (MCC), the F1 score, and majority class recall for the classification of building
type into residential and non-residential houses. The results are reported for different cross-
validation (cv) strategies in the Netherlands, France, and Spain.

Country Cross-validation MCC F1 Recall
residential commercial agricultural industrial others

France Random cv 0.564 0.572 0.851 0.598 0.242 0.612 0.779
Block cv 0.557 0.524 0.852 0.555 0.147 0.473 0.777
Neighborhood cv 0.555 0.516 0.852 0.538 0.146 0.441 0.776
City cv 0.553 0.504 0.853 0.531 0.113 0.409 0.773

Spain Random cv 0.569 0.650 0.807 0.583 0.923 0.705 –
Block cv 0.519 0.600 0.807 0.429 0.869 0.631 –
Neighborhood cv 0.506 0.591 0.815 0.400 0.858 0.583 –
City cv 0.448 0.549 0.815 0.339 0.717 0.543 –

Table 10: Fine-granular building type classification error. Summary of Matthews
Correlation Coefficient (MCC), the F1 score, and class recalls for the multiclass classification
of building type. The results are reported for different cross-validation (cv) strategies in
the Netherlands, France, and Spain. Buildings are classified into residential, commercial,
agricultural, industrial, and others (France only). For the class distribution please refer to
figure 12.

compare our results to previous studies, we further calculate the model’s recall and
F1 score.

First large-scale experiments demonstrate that urban form is also predictive for
the building type in several countries. Buildings can be classified into residential
and non-residential buildings with an F1 score between 0.78 and 0.79 and an MCC
between 0.56 and 0.59 (see Appendix table 9) and into more fine-granular types,
namely residential, commercial, agricultural, industrial and others, with an MCC of
0.51 and 0.56 (see Appendix table 10) when performing neighborhood-based cross-
validation. Compared to the prediction of the construction year, we find that the
difference between random and neighborhood-based cross-validation is relatively small
(in terms of MCC, below 0.01 in France and 0.06 in Spain). We conclude that the
model doesn’t exploit the spatial autocorrelation as much, resulting in type predictions
that are less overoptimistic when relying only on local data and not performing spatial
cross-validation. The high MCC for cross-city predictions also shows that the building
type can estimated comparatively well in unseen regions.

Building height prediction Our experiments show that urban form characteris-
tics are also highly informative for building height across the Netherlands, France and
Spain. Building height can be predicted with an MAE between 0.71 and 1.36 meters
and an R2 of up to 0.77 when performing neighborhood-based cross-validation and
(see Appendix table 11). Access to local information improves the height prediction in
all three countries with a similar magnitude as for the prediction of the construction
year. In the Netherlands, the MAE can even be reduced to 0.56 meters and the R2

increases to 0.84. Overall, the predictive performance in terms of R2 is higher than
for the prediction of the construction year in all three countries. This makes it a
promising tool to infer missing buildings heights in available administrative data and
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Netherlands France Spain All
Cross-validation MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2
Random cv 0.56 1.10 0.84 1.17 1.66 0.56 1.20 2.02 0.71 1.08 1.73 0.67
Block cv 0.66 1.25 0.79 1.23 1.75 0.51 1.28 2.17 0.66 1.13 1.82 0.64
Neighborhood cv 0.71 1.30 0.77 1.26 1.80 0.48 1.36 2.30 0.62 1.17 1.90 0.61
City cv 0.73 1.34 0.76 1.31 1.86 0.45 1.43 2.45 0.57 1.23 1.99 0.57

Table 11: Building height prediction error. Summary of the mean absolute error
(MAE), the root mean squared error (RMSE) in meters and the coefficient of determi-
nation (R2) of the different cross-validation strategies. For random, urban block-based,
neighborhood-based and city-based cross-validation (cv), training and prediction is con-
ducted in the same country or in all countries at once. For country-based cross-validation
the model was trained on two countries to predict in the third country. The table shows the
prediction result for the country used as test set and for all countries, the average over all
validation folds.

more broadly, help to upscale geographically differentiated solutions for low-carbon
urban planning.
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J Additional figures

Figure 21: Exemplary illustration of in-fill housing for Vichy, France. Exemplary
illustration of in-fill housing from bird’s eye view for Vichy, France. In-fill housing refers
to new buildings constructed on underused lots in existing, older urban neighborhoods.
Specifically, we define in-fill housing as adjacent buildings whose construction year is more
than two standard deviations above the mean of all buildings in the same street-based block.
All in-fill buildings are highlighted in orange on the map. The mean absolute error (MAE) is
substantially larger for in-fill housing in France (43.69 years) than for other types of housing
(17.93 years).
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Figure 22: Regional models outperform national model in local inference. Il-
lustration of the coefficient of determination, R2, of specialized regional models with either
80% or 10% local data availability across provinces in the Netherlands, France, and Spain.
For comparison, the prediction quality across regions of the national model evaluated by
5-fold random cross-validation, consequently using 80% of data for training, is depicted on
the right. The median number of buildings per region is about 125,000. See Appendix table
14 for the precise R2 and MAE values.
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Figure 23: Prediction error varies across regions. The mean absolute error (MAE)
varies across countries and regions. At the cross-country level, buildings in the Netherlands
are predicted more accurately than in France and Spain. In France, departments within the
center show comparatively high prediction errors. In Spain, the error varies by a factor of 2
between the provinces. Particularly, provinces in the center and north, with the exception
of the Madrid provincia, show high prediction errors.
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Figure 24: Prediction error differs between settlement types. Visualization of
the error distribution for cities, town, and rural areas according to the EU’s DEGURBA
classification for the Netherlands, France, and Spain.
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Figure 25: Value distributions of most predictive features differ between France,
Netherlands, and Spain. The feature value distributions of the 8 most predictive features
(besides latitude and longitude) differ between France, Netherlands, and Spain. For instance,
more buildings with a small footprint area exist in France compared to the Netherlands and
Spain. On the other side, the Netherlands are more densely built-up, with the number of
buildings and total footprint area in a spatial buffer around each building being larger than
in France and Spain.
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K Additional tables

construction year
Country Type Share Settlement size mean std
Netherlands 1 (city) 43.1 23800 1970.5 27.9

2 (town) 41.6 9463 1974.4 24.6
3 (rural) 15.4 9462 1973.2 27.2

France 1 (city) 8.0 5433 1959.1 32.1
2 (town) 17.8 4760 1971.5 29.6
3 (rural) 74.3 3019 1973.7 31.9

non-residential 17.9 – 1966.5 34.3
residential 82.1 – 1973.1 31.0

Spain 1 (city) 23.4 14117 1978.6 27.0
2 (town) 39.3 3819 1981.4 28.8
3 (rural) 37.3 655 1968.2 37.5

non-residential 21.6 – 1979.0 32.4
residential 78.4 – 1974.6 32.3

Table 12: Settlement and building type statistics of preprocessed dataset. The
table indicates the share of buildings located in cities, town, and rural areas according to
the EU’s DEGURBA classification as well as the share of residential and non-residential
buildings. Building type information is not available in the Netherlands. Settlement size
refers to the average number of buildings per settlement type. Mean and standard deviation
(std) of the construction year is provided for each settlement and building type respectively.

France Netherlands Spain
Bin size Cross-validation <1960 1960-1990 >1990 <1960 1960-1990 >1990 <1960 1960-1990 >1990
5 years Random cv 33.80 40.00 37.20 67.70 79.30 69.80 43.80 36.70 37.70

Block cv 19.30 24.70 22.70 34.70 52.80 43.20 26.30 20.70 21.00
Neighborhood cv 14.80 18.70 18.00 15.10 30.30 23.70 11.80 13.80 17.80
City cv 13.10 17.70 17.00 9.70 28.00 19.00 7.70 10.80 15.50

10 years Random cv 43.50 47.70 47.70 71.70 81.30 73.30 52.50 42.30 44.00
Block cv 31.20 36.30 37.00 43.80 63.30 53.30 36.70 29.30 33.00
Neighborhood cv 26.70 32.00 33.70 24.70 47.70 39.00 20.30 23.00 30.70
City cv 24.20 31.00 32.30 18.50 44.70 35.30 15.20 19.70 28.70

20 years Random cv 59.70 55.50 62.00 78.70 82.50 79.00 63.30 49.00 62.00
Block cv 50.00 48.50 56.00 57.70 70.50 66.00 51.70 39.50 58.00
Neighborhood cv 45.30 45.50 53.00 43.30 62.00 55.00 35.70 35.00 59.00
City cv 42.30 45.00 52.00 35.00 58.00 54.00 30.30 31.50 59.00

Table 13: Mean classification recall before 1960, after 1990, and in between.
Summary of the recall for the classification of construction periods in the Netherlands,
France, and Spain. The recall is averaged across classes whose mean construction year
is before 1960, in between 1960 and 1990, and after 1990. The averaged recall is reported
for different cross-validation (cv) strategies and bin sizes.
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Spain France Netherlands
Local data availability MAE R2 MAE R2 MAE R2
10% 20.0 0.33 18.4 0.33 11.0 0.56
20% 19.4 0.34 17.6 0.36 10.4 0.60
50% 18.5 0.40 16.7 0.41 9.7 0.63
80% 18.1 0.42 16.2 0.43 9.5 0.65
national model 19.1 0.39 17.6 0.39 10.2 0.62

Table 14: Impact of local data availability for region models. Comparison of the
prediction performance of regional models that are trained using 10%, 20%, 50%, or 80%
of the local data from the region and predict all remaining buildings. For 12 states in the
Netherlands, 47 provinces in Spain, and 91 departments in France the averaged results are
reported. For comparison, the prediction quality of the national model evaluated by random
cross-validation is depicted as well.

Neighborhood cv Random cv Across cities Across countries
Country n cities R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE
France 1 -0.07 25.49 31.97 0.30 18.53 26.19 -0.86 33.74 40.02 -3.28 46.92 53.17

2 0.14 23.13 30.18 0.41 17.37 25.12 -0.79 33.34 39.90 -3.32 47.65 54.16
4 0.20 21.29 27.86 0.43 15.97 23.65 -0.14 25.66 31.88 -2.17 39.80 46.21
8 0.25 20.02 26.44 0.43 15.65 23.09 0.02 23.82 29.68 -1.37 33.97 40.25
16 0.30 19.48 25.84 0.46 15.34 22.68 0.17 21.78 27.49 -1.08 31.78 37.75
32 0.34 19.13 25.50 0.48 15.30 22.63 0.25 20.63 26.21 -0.55 26.90 32.54
64 0.35 18.72 25.16 0.47 15.39 22.61 0.28 19.98 25.65 -0.41 25.57 31.13
128 0.37 18.61 25.03 0.49 15.51 22.62 0.30 19.58 25.23 -0.29 24.24 29.80
256 0.38 18.48 24.91 0.48 15.76 22.72 0.33 19.03 24.72 -0.31 24.47 30.04
512 0.39 18.36 24.79 0.49 16.19 22.99 0.32 19.28 24.88 -0.28 24.28 29.76
1024 0.40 18.23 24.67 0.48 16.43 23.12 0.36 18.29 24.18 -0.28 24.14 29.80
2048 0.40 18.06 24.49 0.46 16.69 23.27 0.38 17.87 23.79 -0.31 24.48 30.14
3483 0.41 16.83 23.02 0.49 14.99 21.49 0.38 17.99 23.85 0.39 15.26 20.58

Netherlands 1 -0.15 20.30 25.71 0.56 8.60 15.83 -0.44 26.76 32.38 -0.12 27.01 32.60
2 0.08 19.01 24.21 0.61 8.72 15.84 -0.03 22.50 27.80 -0.00 25.52 30.91
4 0.20 16.47 21.80 0.64 7.56 14.58 0.14 20.42 25.49 0.06 24.58 29.96
8 0.27 16.19 21.48 0.66 7.73 14.63 0.18 19.83 24.78 0.07 24.48 29.86
16 0.31 15.59 20.94 0.66 7.80 14.57 0.23 19.19 24.13 0.12 23.60 29.02
32 0.38 15.04 20.43 0.68 7.92 14.49 0.27 18.54 23.44 0.13 23.34 28.76
64 0.40 14.55 19.96 0.67 8.28 14.68 0.32 17.74 22.70 0.17 22.76 28.18
128 0.41 14.58 20.09 0.66 9.10 15.34 0.34 17.21 22.23 0.18 22.58 27.97
256 0.43 14.34 19.84 0.64 9.60 15.69 0.37 16.65 21.80 0.19 22.37 27.74
424 0.44 14.31 19.87 0.63 10.09 16.09 0.39 16.28 21.46 0.20 22.25 27.66
512 0.43 14.49 20.10 0.62 10.44 16.52 0.39 16.23 21.44 0.26 20.84 26.52
1024 0.42 15.34 21.21 0.56 12.09 18.43 0.39 16.27 21.43 0.33 19.63 25.34

Table 15: Impact of additional data on prediction performance. Results of the
experiment evaluating the impact of additional data on the prediction performance for France
and the Netherlands for different use cases. See section 2.3 for more details. The dashed
horizontal line indicates when data from other countries were used for model training, because
all cities of the respective country were already used.
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Country DEGURBA non-residential residential
France 1 (city) 21.16 17.44

2 (town) 20.63 15.54
3 (rural) 22.84 17.48
All 21.54 16.82

Spain 1 (city) 16.18 15.57
2 (town) 15.57 17.27
3 (rural) 22.34 24.37
All 18.03 19.07

Table 16: Prediction error (MAE) by building and settlement type in France
and Spain. Summary of the mean absolute error (MAE) in meters of residential and non-
residential buildings for different settlement types in France and Spain. Settlement types
are determined according to the EU’s DEGURBA classification. 5-fold neighborhood-based
cross-validation was performed.

France Netherlands Spain All
Construction period
1900-1944 33.82 27.84 37.99 33.22
1945-1969 11.52 9.76 13.45 11.58
1970-1979 9.66 6.56 11.91 9.38
1980-1989 9.91 8.28 12.14 10.11
1990-1999 15.29 12.57 14.13 14.00
2000-2009 20.77 21.07 18.13 19.99
>=2010 27.96 29.40 25.43 27.60
All 18.42 16.50 19.03 17.98

Table 17: Prediction error (MAE) across construction periods. Summary of the
mean absolute error (MAE) across construction periods in the Netherlands, France, Spain.
All refers to the column and row average, respectively. 5-fold neighborhood-based cross-
validation was performed.

France Spain
Construction period non-residential residential non-residential residential
1900-1944 34.27 34.07 41.53 36.74
1945-1959 11.28 12.15 20.77 14.28
1960-1969 11.14 10.99 15.99 11.14
1970-1979 10.73 9.52 12.81 11.83
1980-1989 13.51 9.35 10.73 12.81
1990-1999 22.51 13.77 10.94 15.35
2000-2009 27.92 19.48 15.27 19.08
>=2010 35.82 26.45 22.60 27.29
All 22.48 17.20 18.50 19.40

Table 18: Prediction error (MAE) by building type across construction periods
in France and Spain. Summary of the mean absolute error (MAE) of residential and
non-residential buildings across construction periods in France and Spain. All refers to the
column-wise average. 5-fold neighborhood-based cross-validation was performed.

60



France Spain
Metatype Type MAE RMSE R2 MAE RMSE R2
residential TH 18.09 24.67 0.43 21.28 28.61 0.28

SFH 16.05 21.98 0.38 16.55 22.49 0.26
MFH 20.72 27.47 0.31 16.00 22.29 0.30
AB 15.62 20.55 0.04 10.93 14.72 0.40

non-residential others 21.87 28.36 0.28 – – –
industrial 15.76 22.35 0.14 21.09 27.47 0.39
commercial 26.66 33.09 0.12 19.88 26.13 0.25
agricultural 27.75 34.21 0.15 14.75 19.56 0.18

Table 19: Prediction error by fine-granular building type in France and Spain.
Summary of the mean absolute error (MAE), the root mean squared error (RMSE) in meters
and the coefficient of determination (R2) of different building types. 5-fold neighborhood-
based cross-validation was performed. Building type data is available for Spain and France.
Of all buildings 78.7% are residential in Spain and 82.2% in France. The subtypes of residen-
tial buildings, single-family houses (SFH), terraced houses (TH), multi-family houses (MFH),
and apartment blocks (AB), are estimated using a simple decision tree based on available
building attributes such as height, footprint area and the number of adjacent buildings (see
Appendix section G). The remaining non-residential building, are labeled as agricultural,
industrial or commercial and service buildings based on harmonized cadaster type informa-
tion.

Feature Netherlands France Spain All
distance_to_closest_street 0.032 0.078 0.022 0.044
lat 0.022 0.043 0.062 0.043
FootprintArea 0.011 0.057 0.050 0.039
StdBlockFootprintArea 0.026 0.013 0.077 0.039
buildings_within_buffer_100 0.025 0.037 0.042 0.035
street_betweeness_global_closest_street 0.031 0.050 0.018 0.033
SharedWallLength 0.017 0.011 0.059 0.029
total_ft_area_within_buffer_500 0.028 0.016 0.028 0.024
lon 0.010 0.017 0.036 0.021
std_elongation_within_buffer_100 0.041 0.004 0.014 0.019
street_width_av_closest_street 0.007 0.022 0.027 0.019
av_footprint_area_within_buffer_100 0.015 0.031 0.007 0.018
Phi 0.017 0.032 0.005 0.018
Convexity 0.020 0.007 0.022 0.017
total_ft_area_within_buffer_100 0.017 0.010 0.019 0.016
std_convexity_within_buffer_100 0.014 0.013 0.016 0.014
av_convexity_within_buffer_100 0.011 0.021 0.011 0.014
BlockConvexity 0.012 0.021 0.008 0.014
BlockTotalFootprintArea 0.027 0.006 0.006 0.013
AvBlockFootprintArea 0.010 0.011 0.014 0.012
Total 0.4020 0.5079 0.5503 0.4867

Table 20: Feature importance based on SHAP-values. Feature importance com-
parison between the Netherlands, France, and Spain for the 20 most decisive features when
performing neighborhood-based cross-validation. Feature importance refers to the normal-
ized, individual contribution of each feature to the prediction according to their SHAP-values.
The average feature importance across all countries is depicted in the All column.
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Netherlands France Spain
Add. fts MAE RMSE R2 MAE RMSE R2 MAE RMSE R2
both 13.90 19.42 0.46 17.59 23.98 0.43 18.67 25.66 0.37
height 13.90 19.43 0.46 17.75 24.19 0.42 18.84 25.85 0.37
type 14.30 19.86 0.44 17.82 24.22 0.42 19.09 26.06 0.36
baseline 14.31 19.87 0.44 18.00 24.44 0.41 19.29 26.29 0.34

Table 21: Prediction error for additional features. Impact on the prediction perfor-
mance when using building height and or type as additional features (add. fts) for model
training. We perform neighborhood-based 5-fold cross validation for all experiments. Base-
line refers to a model that does not use either feature as defined in the methods section 2.2
and evaluated in section 3.4.
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