410 research outputs found
Discovery of the Optical Afterglow and Host Galaxy of Short GRB 181123B at z = 1.754: Implications for Delay Time Distributions
We present the discovery of the optical afterglow and host galaxy of the Swift short-duration gamma-ray burst (SGRB) GRB 181123B. Observations with Gemini-North starting ≈9.1 hr after the burst reveal a faint optical afterglow with i ≈ 25.1 mag at an angular offset of 0farcs59 ± 0farcs16 from its host galaxy. Using grizYJHK observations, we measure a photometric redshift of the host galaxy of . From a combination of Gemini and Keck spectroscopy of the host galaxy spanning 4500–18000 Å, we detect a single emission line at 13390 Å, inferred as Hβ at z = 1.754 ± 0.001 and corroborating the photometric redshift. The host galaxy properties of GRB 181123B are typical of those of other SGRB hosts, with an inferred stellar mass of ≈9.1 × 109 M ⊙, a mass-weighted age of ≈0.9 Gyr, and an optical luminosity of ≈0.9L*. At z = 1.754, GRB 181123B is the most distant secure SGRB with an optical afterglow detection and one of only three at z > 1.5. Motivated by a growing number of high-z SGRBs, we explore the effects of a missing z > 1.5 SGRB population among the current Swift sample on delay time distribution (DTD) models. We find that lognormal models with mean delay times of ≈4–6 Gyr are consistent with the observed distribution but can be ruled out to 95% confidence, with an additional ≈one to five Swift SGRBs recovered at z > 1.5. In contrast, power-law models with ∝t −1 are consistent with the redshift distribution and can accommodate up to ≈30 SGRBs at these redshifts. Under this model, we predict that ≈1/3 of the current Swift population of SGRBs is at z > 1. The future discovery or recovery of existing high-z SGRBs will provide significant discriminating power on their DTDs and thus their formation channels
Considering Trauma Exposure in the Context of Genetics Studies of Posttraumatic Stress Disorder: A Systematic Review
Background: Posttraumatic stress disorder (PTSD) is a debilitating anxiety disorder. Surveys of the general population suggest that while 50-85% of Americans will experience a traumatic event in their lifetime, only 2-50% will develop PTSD. Why some individuals develop PTSD following trauma exposure while others remain resilient is a central question in the field of trauma research. For more than half a century, the role of genetic influences on PTSD has been considered as a potential vulnerability factor. However, despite the exponential growth of molecular genetic studies over the past decade, limited progress has been made in identifying true genetic variants for PTSD. Methods: In an attempt to aid future genome wide association studies (GWAS), this paper presents a systematic review of 28 genetic association studies of PTSD. Inclusion criteria required that 1) all participants were exposed to Criterion A traumatic events, 2) polymorphisms of relevant genes were genotyped and assessed in relation to participants’ PTSD status, 3) quantitative methods were used, and 4) articles were published in English and in peer-reviewed journals. In the examination of these 28 studies, particular attention was given to variables related to trauma exposure (e.g. number of traumas, type of trauma). Results: Results indicated that most articles did not report on the GxE interaction in the context of PTSD or present data on the main effects of E despite having data available. Furthermore, some studies that did consider the GxE interaction had significant findings, underscoring the importance of examining how genotypes can modify the effect of trauma on PTSD. Additionally, results indicated that only a small number of genes continue to be studied and that there were marked differences in methodologies across studies, which subsequently limited robust conclusions. Conclusions: As trauma exposure is a necessary condition for the PTSD diagnosis, this paper identifies gaps in the current literature as well as provides recommendations for how future GWAS studies can most effectively incorporate trauma exposure data in both the design and analysis phases of studies
DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY
We present the discovery and extensive early-time observations of the Type Ic supernova (SN) PTF12gzk. Our light curves show a rise of 0.8 mag within 2.5 hr. Power-law fits (f(t)∝(t – t 0) n ) to these data constrain the explosion date to within one day. We cannot rule out a quadratic fireball model, but higher values of n are possible as well for larger areas in the fit parameter space. Our bolometric light curve and a dense spectral sequence are used to estimate the physical parameters of the exploding star and of the explosion. We show that the photometric evolution of PTF12gzk is slower than that of most SNe Ic. The high ejecta expansion velocities we measure (~30, 000 km s–1 derived from line minima four days after explosion) are similar to the observed velocities of broad-lined SNe Ic associated with gamma-ray bursts (GRBs) rather than to normal SN Ic velocities. Yet, this SN does not show the persistent broad lines that are typical of broad-lined SNe Ic. The host-galaxy characteristics are also consistent with GRB-SN hosts, and not with normal SN Ic hosts. By comparison with the spectroscopically similar SN 2004aw, we suggest that the observed properties of PTF12gzk indicate an initial progenitor mass of 25-35 M ☉ and a large ((5-10) × 1051 erg) kinetic energy, the later being close to the regime of GRB-SN properties
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Posttraumatic stress disorder (PTSD) in children after paediatric intensive care treatment compared to children who survived a major fire disaster
<p>Abstract</p> <p>Background</p> <p>The goals were to determine the presence of posttraumatic stress disorder (PTSD) in children after paediatric intensive care treatment, to identify risk factors for PTSD, and to compare this data with data from a major fire disaster in the Netherlands.</p> <p>Methods</p> <p>Children completed the Dutch Children's Responses to Trauma Inventory at three and nine months after discharge from the paediatric intensive care unit (PICU). Comparison data were available from 355 children survivors who completed the same questionnaire 10 months after a major fire disaster.</p> <p>Results</p> <p>Thirty-six children aged eight to 17 years completed questionnaires at three month follow-up, nine month follow-up, or both. More than one third (34.5%) of the children had subclinical PTSD, while 13.8% were likely to meet criteria for PTSD. Maternal PTSD was the strongest predictor for child PTSD. There were no significant differences in (subclinical) PTSD symptoms either over time or compared to symptoms of survivors from the fire disaster.</p> <p>Conclusion</p> <p>This study shows that a considerable number of children have persistent PTSD after PICU treatment. Prevention of PTSD is important to minimize the profound adverse effects that PTSD can have on children's well-being and future development.</p
Recommended from our members
Parental experiences of supporting children with clinically significant post-traumatic distress: a qualitative study of families accessing psychological services
The aim of this study was to investigate the experiences of parents in providing support to their child following trauma exposure in cases where children are experiencing clinically significant levels of post-traumatic distress. Qualitative interviews were conducted with parents whose child was exposed to a trauma and referred for psychological treatment. Parents reported considerable anxiety in coping with their child’s post-traumatic distress. Avoidance of trauma-related discussions was encouraged due to concerns that non-avoidant approaches may worsen children’s post-trauma difficulties. Nonetheless, parents were often sensitive to their child’s distress and offered reassurance and other forms of support. Many barriers existed to accessing psychological treatment, and perceptions of inadequate guidance from therapists on supporting child adjustment contributed to parental distress. The results illustrate the strategies used by parents in supporting their child post-trauma and may assist mental health professionals in providing acceptable guidance to parents following child trauma
Associations between DSM-IV diagnosis, psychiatric symptoms and morning cortisol levels in a community sample of adolescents
Purpose. Dysfunction of the hypothalamic-pituitary-adrenocortical axis (HPA-axis) is implicated in a variety of psychiatric and emotional disorders. In this study, we explore the association between HPA-axis functioning, as measured by morning cortisol, and common psychiatric disorders and symptoms among a community sample of adolescents. Method. Data from a cross-sectional school-based survey of 501 school pupils, aged 15, were used to establish the strength of association between salivary morning cortisol and both diagnosis of psychiatric disorders and a number of psychiatric symptoms, as measured via a computerised psychiatric interview. Analysis, conducted separately by gender, used multiple regressions, adjusting for relevant confounders. Results-á-áWith one exception (a positive association between conduct disorder symptoms and cortisol among females) there was no association between morning cortisol and psychiatric diagnosis or symptoms. However, there was a significant two-way interaction between gender and conduct symptoms, with females showing a positive and males a negative association between cortisol and conduct symptoms. A further three-way interaction showed that while the association between cortisol and conduct symptoms was negative among males with a few mood disorder symptoms, among females with many mood symptoms it was positive. Conclusions. Except in relation to conduct symptoms, dysregulation of morning cortisol levels seems unrelated to any psychiatric disorder or symptoms. However, the relationship between cortisol and conduct symptoms is moderated by both gender and mood symptoms. Findings are compatible with the recent work suggesting research should concentrate on the moderated associations between gender, internalising and externalising symptoms and cortisol, rather than any simple relationship
- …