5 research outputs found

    Avoiding Loss of Catalytic Activity of Pd Nanoparticles Partially Embedded in Nanoditches in SiC Nanowires

    Get PDF
    Nanoditches from selective etching of periodically twinned SiC nanowires were employed to hinder the migration and coalescence of Pd nanoparticles supported on the nanowires, and thus to improve their catalytic stability for total combustion of methane. The results show that the etched Pd/SiC catalyst can keep the methane conversion of almost 100% while the unetched one has an obvious decline in the catalytic activity from 100 to 82% after ten repeated reaction cycles. The excellent catalytic stability originates from the limitation of the nanoditches to the migration and growth of Pd nanoparticles

    Reductive Dehalogenases Come of Age in Biological Destruction of Organohalides

    No full text
    Halogenated organic compounds (organohalides) are globally prevalent, recalcitrant toxic, and carcinogenic environmental pollutants. Select microorganisms encode enzymes known as reductive dehalogenases (EC 1.97.1.8) that catalyze reductive dehalogenation reactions resulting in the generation of lesser-halogenated compounds that may be less toxic and more biodegradable. Recent breakthroughs in enzyme structure determination, elucidation of the mechanisms of reductive dehalogenation, and in heterologous expression of functional reductive dehalogenase enzymes have substantially increased our understanding of this fascinating class of enzymes. This knowledge has created opportunities for more versatile (in situ and ex situ) biologically-mediated organohalide destruction strategies

    Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments

    Get PDF
    Microbial Biotechnology53347-36
    corecore