91 research outputs found

    Associations between maternal urinary iodine assessment, dietary iodine intakes and neurodevelopmental outcomes in the child: A Systematic Review

    Get PDF
    Abstract Objective Mild to moderate iodine deficiency during pregnancy has been associated with adverse neurodevelopmental outcomes in offspring. Few research studies to date combine assessment of urinary iodine (UIC and/or ICr), biomarkers that best reflect dietary intake, with reported dietary intake of iodine rich foods in their assessment of iodine deficiency. Thus, a systematic review was conducted to incorporate both these important measures. Design Using PRISMA guidelines, a comprehensive search was conducted in three electronic databases (EMBASE®, MedLine® and Web of Science®) from January 1970–March 2021. Quality assessment was undertaken using the Newcastle Ottawa Scale. Eligible studies included reported assessment of iodine status through urinary iodine (UIC and/or ICr) and/or dietary intake measures in pregnancy alongside neurodevelopmental outcomes measured in the children. Data extracted included study author, design, sample size, country, gestational age, child age at testing, cognitive tests, urinary iodine assessment (UIC in μg/L and/or ICr in μg/g), dietary iodine intake assessment and results of associations for the assessed cognitive outcomes. Results Twelve studies were included with nine reporting women as mild-moderately iodine deficient based on World Health Organization (WHO) cut-offs for urinary iodine measurements < 150 μg/l, as the median UIC value in pregnant women. Only four of the nine studies reported a negative association with child cognitive outcomes based on deficient urinary iodine measurements. Five studies reported urinary iodine measurements and dietary intakes with four of these studies reporting a negative association of lower urinary iodine measurements and dietary iodine intakes with adverse offspring neurodevelopment. Milk was identified as the main dietary source of iodine in these studies. Conclusion The majority of studies classified pregnant women to be mild-moderately iodine deficient based on urinary iodine assessment (UIC and/or ICr) and/or dietary intakes, with subsequent offspring neurodevelopment implications identified. Although a considerable number of studies did not report an adverse association with neurodevelopmental outcomes, these findings are still supportive of ensuring adequate dietary iodine intakes and urinary iodine monitoring throughout pregnancy due to the important role iodine plays within foetal neurodevelopment. This review suggests that dietary intake data may indicate a stronger association with cognitive outcomes than urinary iodine measurements alone. The strength of this review distinguishes results based on cognitive outcome per urinary iodine assessment strategy (UIC and/or ICr) with dietary data. Future work is needed respecting the usefulness of urinary iodine assessment (UIC and/or ICr) as an indicator of deficiency whilst also taking account of dietary intakes

    Expression of NRG1 and its receptors in human bladder cancer

    Get PDF
    BACKGROUND: Therapies targeting ERBB2 have shown success in the clinic. However, response is not determined solely by expression of ERBB2. Levels of ERBB3, its preferred heterodimerisation partner and ERBB ligands may also have a role. METHODS: We measured NRG1 expression by real-time quantitative RT–PCR and ERBB receptors by western blotting and immunohistochemistry in bladder tumours and cell lines. RESULTS: NRG1a and NRG1b showed significant coordinate expression. NRG1b was upregulated in 78 % of cell lines. In tumours, there was a greater range of expression with a trend towards increased NRG1a with higher stage and grade. Increased expression o

    Where the Lake Meets the Sea: Strong Reproductive Isolation Is Associated with Adaptive Divergence between Lake Resident and Anadromous Three-Spined Sticklebacks

    Get PDF
    Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean F-ST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone

    Vascular proteomics in metabolic and cardiovascular diseases.

    Get PDF
    The vasculature is essential for proper organ function. Many pathologies are directly and indirectly related to vascular dysfunction, which causes significant morbidity and mortality. A common pathophysiological feature of diseased vessels is extracellular matrix (ECM) remodelling. Analysing the protein composition of the ECM by conventional antibody-based techniques is challenging; alternative splicing or post-translational modifications, such as glycosylation, can mask epitopes required for antibody recognition. By contrast, proteomic analysis by mass spectrometry enables the study of proteins without the constraints of antibodies. Recent advances in proteomic techniques make it feasible to characterize the composition of the vascular ECM and its remodelling in disease. These developments may lead to the discovery of novel prognostic and diagnostic markers. Thus, proteomics holds potential for identifying ECM signatures to monitor vascular disease processes. Furthermore, a better understanding of the ECM remodelling processes in the vasculature might make ECM-associated proteins more attractive targets for drug discovery efforts. In this review, we will summarize the role of the ECM in the vasculature. Then, we will describe the challenges associated with studying the intricate network of ECM proteins and the current proteomic strategies to analyse the vascular ECM in metabolic and cardiovascular diseases

    ccdc80-l1 Is Involved in Axon Pathfinding of Zebrafish Motoneurons

    Get PDF
    Axon pathfinding is a subfield of neural development by which neurons send out axons to reach the correct targets. In particular, motoneurons extend their axons toward skeletal muscles, leading to spontaneous motor activity. In this study, we identified the zebrafish Ccdc80 and Ccdc80-like1 (Ccdc80-l1) proteins in silico on the basis of their high aminoacidic sequence identity with the human CCDC80 (Coiled-Coil Domain Containing 80). We focused on ccdc80-l1 gene that is expressed in nervous and non-nervous tissues, in particular in territories correlated with axonal migration, such as adaxial cells and muscle pioneers. Loss of ccdc80-l1 in zebrafish embryos induced motility issues, although somitogenesis and myogenesis were not impaired. Our results strongly suggest that ccdc80-l1 is involved in axon guidance of primary and secondary motoneurons populations, but not in their proper formation. ccdc80-l1 has a differential role as regards the development of ventral and dorsal motoneurons, and this is consistent with the asymmetric distribution of the transcript. The axonal migration defects observed in ccdc80-l1 loss-of-function embryos are similar to the phenotype of several mutants with altered Hedgehog activity. Indeed, we reported that ccdc80-l1 expression is positively regulated by the Hedgehog pathway in adaxial cells and muscle pioneers. These findings strongly indicate ccdc80-l1 as a down-stream effector of the Hedgehog pathway

    EPMA position paper in cancer: current overview and future perspectives

    Get PDF
    • …
    corecore