3,929 research outputs found

    Adaptive Basketball Shooter - Final Project Report

    Get PDF
    The Friday Club is a joint venture between the Cal Poly Kinesiology Department and the San Luis Obispo Special Olympics that offers people with varying degrees of disability the opportunity to meet weekly and learn various sports and games. At Friday Club, athletes in wheelchairs with limited arm strength use devices built by Cal Poly mechanical engineering students in order to participate in various sports. Many devices are designed to attach to the Universal Play Frame (UPF), a wheel-chair attachment. The purpose of this project was to design and build a UPF device that will launch a basketball, so that an athlete can participate in a game of “Horse.” The project was worked on over the course of the 2013-2014 school year. To begin, the team developed a list of objectives for the device to meet and researched existing solutions for various facets of our design. The next step was to generate concepts of our device, and using Pugh matrices, proof of concept testing, and debate to narrow down to a single concept. Next, this concept was transformed into a fully-fledged design backed by engineering analysis. After design approval, all necessary parts and materials were ordered and a prototype was built over a 10 week period. The final prototype was tested with the Friday Club and displayed at the Senior Project Expo on May 31, 2014. The final device that our team designed is a slingshot that launches the ball by releasing stretched elastic bands. Our design attaches to the UPF at two points, and can be aimed to shoot a basket from anywhere between 5 and 15 feet away. The athlete has the ability to control the direction, power, and release of each shot. The device can be set up in under five minutes by a single person and takes only 30 seconds to reset between shots. Of all customer requirements that the device was to meet, it only failed to meet one of them. The first was that it should be able to shoot a three-pointer. Unfortunately, our device either did not have strong enough elastic, or did not have enough space to pull back the ball and carriage sufficiently. Therefore, our device can shoot a basket from a maximum of only 15 feet away, or a free throw. Other future recommendations are to strengthen some parts that take high impacts and to reduce the weight of some unnecessarily bulky parts. Our budget for this project was 1,500butoverthecourseofthisprojectourteamspentalittleover1,500 but over the course of this project our team spent a little over 1,750. After analyzing our spending, we found that over 300wasspentbecauseofmanufacturingmistakesandmid−constructiondesignchanges.Ifweweretobuildanotherdevicewiththeexactsamedesignasourfinalprototype,andwithnomistakes,thedevicewouldcostabout300 was spent because of manufacturing mistakes and mid-construction design changes. If we were to build another device with the exact same design as our final prototype, and with no mistakes, the device would cost about 1,400. In this report, our team’s entire design process is cataloged in detail. Also enclosed are detailed part drawings for each manufactured part of our final device, as well as a safety and operation manual

    The inverse cascade and nonlinear alpha-effect in simulations of isotropic helical hydromagnetic turbulence

    Full text link
    A numerical model of isotropic homogeneous turbulence with helical forcing is investigated. The resulting flow, which is essentially the prototype of the alpha^2 dynamo of mean-field dynamo theory, produces strong dynamo action with an additional large scale field on the scale of the box (at wavenumber k=1; forcing is at k=5). This large scale field is nearly force-free and exceeds the equipartition value. As the magnetic Reynolds number R_m increases, the saturation field strength and the growth rate of the dynamo increase. However, the time it takes to built up the large scale field from equipartition to its final super-equipartition value increases with magnetic Reynolds number. The large scale field generation can be identified as being due to nonlocal interactions originating from the forcing scale, which is characteristic of the alpha-effect. Both alpha and turbulent magnetic diffusivity eta_t are determined simultaneously using numerical experiments where the mean-field is modified artificially. Both quantities are quenched in a R_m-dependent fashion. The evolution of the energy of the mean field matches that predicted by an alpha^2 dynamo model with similar alpha and eta_t quenchings. For this model an analytic solution is given which matches the results of the simulations. The simulations are numerically robust in that the shape of the spectrum at large scales is unchanged when changing the resolution from 30^3 to 120^3 meshpoints, or when increasing the magnetic Prandtl number (viscosity/magnetic diffusivity) from 1 to 100. Increasing the forcing wavenumber to 30 (i.e. increasing the scale separation) makes the inverse cascade effect more pronounced, although it remains otherwise qualitatively unchanged.Comment: 21 pages, 26 figures, ApJ (accepted

    Jupiter's interior from Juno: Equation-of-state uncertainties and dilute core extent

    Get PDF
    The Juno mission has provided measurements of Jupiter s gravity field with an outstanding level of accuracy, leading to better constraints on the interior of the planet. Improving our knowledge of the internal structure of Jupiter is key to understanding its formation and evolution but is also important in the framework of exoplanet exploration. In this study, we investigated the differences between the state-of-the-art equations of state and their impact on the properties of interior models. Accounting for uncertainty on the hydrogen and helium equation of state, we assessed the span of the interior features of Jupiter. We carried out an extensive exploration of the parameter space and studied a wide range of interior models using Markov chain Monte Carlo (MCMC) simulations. To consider the uncertainty on the equation of state, we allowed for modifications of the equation of state in our calculations. Our models harbour a dilute core and indicate that Jupiter s internal entropy is higher than what is usually assumed from the Galileo probe measurements. We obtain solutions with extended dilute cores, but contrary to other recent interior models of Jupiter, we also obtain models with small dilute cores. The dilute cores in such solutions extend to 20% of Jupiter s mass, leading to better agreement with formation evolution models. We conclude that the equations of state used in Jupiter models have a crucial effect on the inferred structure and composition. Further explorations of the behaviour of hydrogen helium mixtures at the pressure and temperature conditions in Jupiter will help to constrain the interior of the planet, and therefore its origin

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV

    Get PDF
    The azimuthal anisotropy of charged particles in PbPb collisions at nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS detector at the LHC over an extended transverse momentum (pt) range up to approximately 60 GeV. The data cover both the low-pt region associated with hydrodynamic flow phenomena and the high-pt region where the anisotropies may reflect the path-length dependence of parton energy loss in the created medium. The anisotropy parameter (v2) of the particles is extracted by correlating charged tracks with respect to the event-plane reconstructed by using the energy deposited in forward-angle calorimeters. For the six bins of collision centrality studied, spanning the range of 0-60% most-central events, the observed v2 values are found to first increase with pt, reaching a maximum around pt = 3 GeV, and then to gradually decrease to almost zero, with the decline persisting up to at least pt = 40 GeV over the full centrality range measured.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore