681 research outputs found

    Dextral and sinistral Amphidromus inversus (Gastropoda: Pulmonata: Camaenidae) produce dextral sperm

    Get PDF
    Coiling direction in pulmonate gastropods is determined by a single gene via a maternal effect, which causes cytoskeletal dynamics in the early embryo of dextral gastropods to be the mirror image of the same in sinistral ones. We note that pulmonate gastropod spermatids also go through a helical twisting during their maturation. Moreover, we suspect that the coiling direction of the helical elements of the spermatozoa may affect their behaviour in the female reproductive tract, giving rise to the possibility that sperm chirality plays a role in the maintenance of whole-body chiral dimorphism in the tropical arboreal gastropod Amphidromus inversus (Müller, 1774). For these reasons, we investigated whether there is a relationship between a gastropod’s body chirality and the chirality of the spermatozoa it produces. We found that spermatozoa in A. inversus are always dextrally coiled, regardless of the coiling direction of the animal itself. However, a partial review of the literature on sperm morphology in the Pulmonata revealed that chiral dimorphism does exist in certain species, apparently without any relationship with the coiling direction of the body. Though our study shows that body and sperm chirality follows independent developmental pathways, it gives rise to several questions that may be relevant to the understanding of the chirality of spermatid ultrastructure and spermatozoan motility and sexual selection

    Technical Note: Latitude-time variations of atmospheric column-average dry air mole fractions of CO_2, CH_4 and N_2O

    Get PDF
    We present a comparison of an atmospheric general circulation model (AGCM)-based chemistry-transport model (ACTM) simulation with total column measurements of CO_2, CH_4 and N_2O from the Total Carbon Column Observing Network (TCCON). The model is able to capture observed trends, seasonal cycles and inter hemispheric gradients at most sampled locations for all three species. The model-observation agreements are best for CO_2, because the simulation uses fossil fuel inventories and an inverse model estimate of non-fossil fuel fluxes. The ACTM captures much of the observed seasonal variability in CO_2 and N_2O total columns (~81 % variance, R>0.9 between ACTM and TCCON for 19 out of 22 cases). These results suggest that the transport processes in troposphere and stratosphere are well represented in ACTM. Thus the poor correlation between simulated and observed CH4 total columns, particularly at tropical and extra-tropical sites, have been attributed to the uncertainties in surface emissions and loss by hydroxyl radicals. While the upward-looking total column measurements of CO_2 contains surface flux signals at various spatial and temporal scales, the N_2O measurements are strongly affected by the concentration variations in the upper troposphere and stratosphere

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Hepatocyte Growth Factor Increases Osteopontin Expression in Human Osteoblasts through PI3K, Akt, c-Src, and AP-1 Signaling Pathway

    Get PDF
    BACKGROUND: Hepatocyte growth factor (HGF) has been demonstrated to stimulate osteoblast proliferation and participated bone remodeling. Osteopontin (OPN) is a secreted phosphoglycoprotein that belongs to the SIBLING family and is present during bone mineralization. However, the effects of HGF on OPN expression in human osteoblasts are large unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we found that HGF induced OPN expression in human osteoblasts dose-dependently. HGF-mediated OPN production was attenuated by c-Met inhibitor and siRNA. Pretreatment of osteoblasts with PI3K inhibitor (Ly294002), Akt inhibitor, c-Src inhibitor (PP2), or AP-1 inhibitor (curcumin) blocked the potentiating action of HGF. Stimulation of osteoblasts with HGF enhanced PI3K, Akt, and c-Src activation. In addition, incubation of cells with HGF also increased c-Jun phosphorylation, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the OPN promoter. HGF-mediated AP-1-luciferase activity and c-Jun binding to the AP-1 element was reduced by c-Met inhibitor, Ly294002, Akt inhibitor, and PP2. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the interaction between HGF and c-Met increases OPN expression in human osteoblasts via the PI3K, Akt, c-Src, c-Jun, and AP-1 signaling pathway

    Ethanolic extract of the natural product of Daun sirih (Piper betle) leaves may impede the effectiveness of the plasma jet contact style for acute wounds

    Get PDF
    Purpose: An investigation was carried out to determine the effect of an ethanolic extract of the natural product of Daun sirih or Piper betle leaves on the effectiveness of plasma jet treatment for cutaneous acute wound healing in a small animal model mimicking a clinical setting. Method: An atmospheric plasma jet using medical grade argon gas as a carrier gas was developed. The ethanolic extract of Piper betle leaf (EPB) was formulated. Optical emission spectroscopy and chemical methods were applied to evaluate the presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the gas phase and in aqueous and ethanolic media. Small animals were classified into 5 groups, namely, Control (C), Plasma jet (P), Ethanolic extract of Piper betle leaf (EPB), Plasma jet followed by EPB (P-EPB) and EPB followed by plasma jet (EPB-P). The contact and meander styles of plasma jet treatment for wounds were applied daily on acute wounds for 1 min, either alone or before or after EPB treatments. Visual evaluation of wounds was conducted for 14 days. Microscopic evaluation was conducted on days 7, 11 and 14. General staining, namely, haematoxylin-eosin and Azan staining, was conducted to evaluate neoepithelialisation and new collagen formation. Results: This research showed that wound healing in the P group was faster than that in the other groups, while that in groups containing EPB was the same as that in C. In the P group, the number of days to reach peak inflammation was the fewest. On day 7, neoepithelialisation and new collagen formation in P were significantly higher than those in other groups. Conclusion: Plasma jet treatment alone is able to promote inflammation, neoepithelialisation and new collagen formation to accelerate acute wound healing; however, its admixture with EPB may impede such effectiveness. Based on the characterization of the ROS and RNS results, the ethanol solvent may play a primary role in impeding its effectiveness

    Human Gastric Mucins Differently Regulate Helicobacter pylori Proliferation, Gene Expression and Interactions with Host Cells

    Get PDF
    Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host

    Perlecan Maintains microvessel integrity in vivo and modulates their formation in vitro

    Get PDF
    Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs) during vasculogenesis. In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs) in the absence of perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E) 12.5. At later stages of development 40% of mutant embryos showed dilated microvessels in brain and skin, which ruptured and led to severe bleedings. Surprisingly, teratomas derived from perlecan-null ES cells showed efficient contribution of perlecan-deficient endothelial cells to an apparently normal tumor vasculature. However, in perlecan-deficient EBs the area occupied by an endothelial network and the number of vessel branches were significantly diminished. Addition of FGF-2 but not VEGF165 rescued the in vitro deficiency of the mutant ES cells. Furthermore, in the absence of perlecan in the EB matrix lower levels of FGFs are bound, stored and available for cell surface presentation. Altogether these findings suggest that perlecan supports the maintenance of brain and skin subendothelial BMs and promotes vasculo- and angiogenesis by modulating FGF-2 function

    LAP2 Is Widely Overexpressed in Diverse Digestive Tract Cancers and Regulates Motility of Cancer Cells

    Get PDF
    BACKGROUND: Lamina-associated polypeptides 2 (LAP2) is a nuclear protein that connects the nuclear lamina with chromatin. Although its critical roles in genetic disorders and hematopoietic malignancies have been described, its expression and roles in digestive tract cancers have been poorly characterized. METHODS: To examine the expression of LAP2 in patient tissues, we performed immunohistochemistry and real-time PCR. To examine motility of cancer cells, we employed Boyden chamber, wound healing and Matrigel invasion assays. To reveal its roles in metastasis in vivo, we used a liver metastasis xenograft model. To investigate the underlying mechanism, a cDNA microarray was conducted. RESULTS: Immunohistochemistry in patient tissues showed widespread expression of LAP2 in diverse digestive tract cancers including stomach, pancreas, liver, and bile duct cancers. Real-time PCR confirmed that LAP2β is over-expressed in gastric cancer tissues. Knockdown of LAP2β did not affect proliferation of most digestive tract cancer cells except pancreatic cancer cells. However, knockdown of LAP2β decreased motility of all tested cancer cells. Moreover, overexpression of LAP2β increased motility of gastric and pancreatic cancer cells. In the liver metastasis xenograft model, LAP2β increased metastatic efficacy of gastric cancer cells and mortality in tested mice. cDNA microarrays showed the possibility that myristoylated alanine-rich C kinase substrate (MARCKS) and interleukin6 (IL6) may mediate LAP2β-regulated motility of cancer cells. CONCLUSIONS: From the above results, we conclude that LAP2 is widely overexpressed in diverse digestive tract cancers and LAP2β regulates motility of cancer cells and suggest that LAP2β may have utility for diagnostics and therapeutics in digestive tract cancers
    corecore