158 research outputs found

    Phenology is the dominant control of methane emissions in a tropical non-forested wetland

    Get PDF
    Tropical wetlands are a significant source of atmospheric methane (CH4), but their importance to the global CH4 budget is uncertain due to a paucity of direct observations. Net wetland emissions result from complex interactions and co-variation between microbial production and oxidation in the soil, and transport to the atmosphere. Here we show that phenology is the overarching control of net CH4 emissions to the atmosphere from a permanent, vegetated tropical swamp in the Okavango Delta, Botswana, and we find that vegetative processes modulate net CH4 emissions at sub-daily to inter-annual timescales. Without considering the role played by papyrus on regulating the efflux of CH4 to the atmosphere, the annual budget for the entire Okavango Delta, would be under- or over-estimated by a factor of two. Our measurements demonstrate the importance of including vegetative processes such as phenological cycles into wetlands emission budgets of CH4

    From sink to source: high inter-annual variability in the carbon budget of a southern African wetland

    Get PDF
    We report on three years of continuous monitoring of carbon dioxide (CO2) and methane (CH4) emissions in two contrasting wetland areas of the Okavango Delta, Botswana: a perennial swamp and a seasonal floodplain. The hydrographic zones of the Okavango Delta possess distinct attributes (e.g. vegetation zonation, hydrology) which dictate their respective greenhouse gas (GHG) temporal emission patterns and magnitude. The perennial swamp was a net source of carbon (expressed in CO2-eq units), while the seasonal swamp was a sink in 2018. Despite differences in vegetation types and lifecycles, the net CO2 uptake was comparable at the two sites studied in 2018/2020 (−894.2 ± 127.4 g m−2 yr−1 at the perennial swamp, average of the 2018 and 2020 budgets, and −1024.5 ± 134.7 g m−2 yr−1 at the seasonal floodplain). The annual budgets of CH4 were however a factor of three larger at the permanent swamp in 2018 compared to the seasonal floodplain. Both ecosystems were sensitive to drought, which switched these sinks of atmospheric CO2 into sources in 2019. This phenomenon was particularly strong at the seasonal floodplain (net annual loss of CO2 of 1572.4 ± 158.1 g m−2), due to a sharp decrease in gross primary productivity. Similarly, drought caused CH4 emissions at the seasonal floodplain to decrease by a factor of 4 in 2019 compared to the previous year, but emissions from the perennial swamp were unaffected. Our study demonstrates that complex and divergent processes can coexist within the same landscape, and that meteorological anomalies can significantly perturb the balance of the individual terms of the GHG budget. Seasonal floodplains are particularly sensitive to drought, which exacerbate carbon losses to the atmosphere, and it is crucial to improve our understanding of the role played by such wetlands in order to better forecast how their emissions might evolve in a changing climate. Studying such hydro-ecosystems, particularly in the data-poor tropics, and how natural stressors such as drought affect them, can also inform on the potential impacts of man-made perturbations (e.g. construction of hydro-electric dams) and how these might be mitigated. Given the contrasting effects of drought on the CO2 and CH4 flux terms, it is crucial to evaluate an ecosystem's complete carbon budget instead of treating these GHGs in isolation

    Orbits of Near-Earth Asteroid Triples 2001 SN263 and 1994 CC: Properties, Origin, and Evolution

    Full text link
    Three-body model fits to Arecibo and Goldstone radar data reveal the nature of two near-Earth asteroid triples. Triple-asteroid system 2001 SN263 is characterized by a primary of ~10^13 kg, an inner satellite ~1% as massive orbiting at ~3 primary radii in ~0.7 days, and an outer satellite ~2.5% as massive orbiting at ~13 primary radii in ~6.2 days. 1994 CC is a smaller system with a primary of mass ~2.6 \times 10^11 kg and two satellites ~2% and ~1% as massive orbiting at distances of ~5.5 and ~19.5 primary radii. Their orbital periods are ~1.2 and ~8.4 days. Examination of resonant arguments shows that the satellites are not currently in a mean-motion resonance. Precession of the apses and nodes are detected in both systems (2001 SN263 inner body: d{\varpi}/dt ~1.1 deg/day, 1994 CC inner body: d{\varpi}/dt ~ -0.2 deg/day), which is in agreement with analytical predictions of the secular evolution due to mutually interacting orbits and primary oblateness. Nonzero mutual inclinations between the orbital planes of the satellites provide the best fits to the data in both systems (2001 SN263: ~14 degrees, 1994 CC: ~16 degrees). Our best-fit orbits are consistent with nearly circular motion, except for 1994 CC's outer satellite which has an eccentric orbit of e ~ 0.19. We examine several processes that can generate the observed eccentricity and inclinations, including the Kozai and evection resonances, past mean-motion resonance crossings, and close encounters with terrestrial planets. In particular, we find that close planetary encounters can easily excite the eccentricities and mutual inclinations of the satellites' orbits to the currently observed values.Comment: 17 pages, accepted to Astronomical Journa

    Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families

    Get PDF
    The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation) family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1). In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins

    Benefits and barriers among volunteer teaching faculty: comparison between those who precept and those who do not in the core pediatrics clerkship

    Get PDF
    Background: Community-based outpatient experiences are a core component of the clinical years in medical school. Central to the success of this experience is the recruitment and retention of volunteer faculty from the community. Prior studies have identified reasons why some preceptors volunteer their time however, there is a paucity of data comparing those who volunteer from those who do not. Methods: A survey was developed following a review of previous studies addressing perceptions of community-based preceptors. A non-parametric, Mann–Whitney U test was used to compare active preceptors (APs) and inactive preceptors (IPs) and all data were analyzed in SPSS 20.0. Results: There was a 28% response rate. Preceptors showed similar demographic characteristics, valued intrinsic over extrinsic benefits, and appreciated Continuing Medical Education (CME)/Maintenance of Certification (MOC) opportunities as the highest extrinsic reward. APs were more likely to also precept at the M1/M2 level and value recognition and faculty development opportunities (p<0.05). IPs denoted time as the most significant barrier and, in comparison to APs, rated financial compensation as more important (p<0.05). Conclusions: Community preceptors are motivated by intrinsic benefits of teaching. Efforts to recruit should initially focus on promoting awareness of teaching opportunities and offering CME/MOC opportunities. Increasing the pool of preceptors may require financial compensation

    Seasonal melting and the formation of sedimentary rocks on Mars, with predictions for the Gale Crater mound

    Get PDF
    A model for the formation and distribution of sedimentary rocks on Mars is proposed. The rate-limiting step is supply of liquid water from seasonal melting of snow or ice. The model is run for a O(10^2) mbar pure CO2 atmosphere, dusty snow, and solar luminosity reduced by 23%. For these conditions snow only melts near the equator, and only when obliquity >40 degrees, eccentricity >0.12, and perihelion occurs near equinox. These requirements for melting are satisfied by 0.01-20% of the probability distribution of Mars' past spin-orbit parameters. Total melt production is sufficient to account for aqueous alteration of the sedimentary rocks. The pattern of seasonal snowmelt is integrated over all spin-orbit parameters and compared to the observed distribution of sedimentary rocks. The global distribution of snowmelt has maxima in Valles Marineris, Meridiani Planum and Gale Crater. These correspond to maxima in the sedimentary-rock distribution. Higher pressures and especially higher temperatures lead to melting over a broader range of spin-orbit parameters. The pattern of sedimentary rocks on Mars is most consistent with a Mars paleoclimate that only rarely produced enough meltwater to precipitate aqueous cements and indurate sediment. The results suggest intermittency of snowmelt and long globally-dry intervals, unfavorable for past life on Mars. This model makes testable predictions for the Mars Science Laboratory rover at Gale Crater. Gale Crater is predicted to be a hemispheric maximum for snowmelt on Mars.Comment: Submitted to Icarus. Minor changes from submitted versio

    Long-Term Benefits from Early Antiretroviral Therapy Initiation in HIV Infection

    Get PDF
    BACKGROUND: For people with HIV and CD4+ counts >500 cells/mm3, early initiation of antiretroviral therapy (ART) reduces serious AIDS and serious non-AIDS (SNA) risk compared with deferral of treatment until CD4+ counts are 500 cells/mm3, excess risk of AIDS and SNA associated with delaying treatment initiation was diminished after ART initiation, but persistent excess risk remained. (Funded by the National Institute of Allergy and Infectious Diseases and others.)

    Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): a double-blind, placebo-controlled, phase 3, randomised trial

    Get PDF
    BACKGROUND: Passive immunotherapy using hyperimmune intravenous immunoglobulin (hIVIG) to SARS-CoV-2, derived from recovered donors, is a potential rapidly available, specific therapy for an outbreak infection such as SARS-CoV-2. Findings from randomised clinical trials of hIVIG for the treatment of COVID-19 are limited. METHODS: In this international randomised, double-blind, placebo-controlled trial, hospitalised patients with COVID-19 who had been symptomatic for up to 12 days and did not have acute end-organ failure were randomly assigned (1:1) to receive either hIVIG or an equivalent volume of saline as placebo, in addition to remdesivir, when not contraindicated, and other standard clinical care. Randomisation was stratified by site pharmacy; schedules were prepared using a mass-weighted urn design. Infusions were prepared and masked by trial pharmacists; all other investigators, research staff, and trial participants were masked to group allocation. Follow-up was for 28 days. The primary outcome was measured at day 7 by a seven-category ordinal endpoint that considered pulmonary status and extrapulmonary complications and ranged from no limiting symptoms to death. Deaths and adverse events, including organ failure and serious infections, were used to define composite safety outcomes at days 7 and 28. Prespecified subgroup analyses were carried out for efficacy and safety outcomes by duration of symptoms, the presence of anti-spike neutralising antibodies, and other baseline factors. Analyses were done on a modified intention-to-treat (mITT) population, which included all randomly assigned participants who met eligibility criteria and received all or part of the assigned study product infusion. This study is registered with ClinicalTrials.gov, NCT04546581. FINDINGS: From Oct 8, 2020, to Feb 10, 2021, 593 participants (n=301 hIVIG, n=292 placebo) were enrolled at 63 sites in 11 countries; 579 patients were included in the mITT analysis. Compared with placebo, the hIVIG group did not have significantly greater odds of a more favourable outcome at day 7; the adjusted OR was 1·06 (95% CI 0·77–1·45; p=0·72). Infusions were well tolerated, although infusion reactions were more common in the hIVIG group (18·6% vs 9·5% for placebo; p=0·002). The percentage with the composite safety outcome at day 7 was similar for the hIVIG (24%) and placebo groups (25%; OR 0·98, 95% CI 0·66–1·46; p=0·91). The ORs for the day 7 ordinal outcome did not vary for subgroups considered, but there was evidence of heterogeneity of the treatment effect for the day 7 composite safety outcome: risk was greater for hIVIG compared with placebo for patients who were antibody positive (OR 2·21, 95% CI 1·14–4·29); for patients who were antibody negative, the OR was 0·51 (0·29–0·90; pinteraction=0·001). INTERPRETATION: When administered with standard of care including remdesivir, SARS-CoV-2 hIVIG did not demonstrate efficacy among patients hospitalised with COVID-19 without end-organ failure. The safety of hIVIG might vary by the presence of endogenous neutralising antibodies at entry. FUNDING: US National Institutes of Health

    Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder:Results from the ENIGMA-PGC PTSD Consortium

    Get PDF
    BACKGROUND: Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical neuroanatomy. We investigated alteration in covariance of structural networks associated with PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and surface area (SA). METHODS: Neuroimaging and clinical data were aggregated from 29 research sites in >1,300 PTSD cases and >2,000 trauma-exposed controls (age 6.2-85.2 years) by the ENIGMA-PGC PTSD working group. Cortical regions in the network were rank-ordered by effect size of PTSD-related cortical differences in CT and SA. The top-n (n = 2 to 148) regions with the largest effect size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < non-PTSD formed atrophic networks, and the smallest effect size of between-group differences formed stable networks. The mean structural covariance (SC) of a given n-region network was the average of all positive pairwise correlations and was compared to the mean SC of 5,000 randomly generated n-region networks. RESULTS: Patients with PTSD, relative to non-PTSD controls, exhibited lower mean SC in CT-based and SA-based atrophic networks. Comorbid depression, sex and age modulated covariance differences of PTSD-related structural networks. CONCLUSIONS: Covariance of structural networks based on CT and cortical SA are affected by PTSD and further modulated by comorbid depression, sex, and age. The structural covariance networks that are perturbed in PTSD comport with converging evidence from resting state functional connectivity networks and networks impacted by inflammatory processes, and stress hormones in PTSD
    • …
    corecore