25 research outputs found

    Predicting invasive breast cancer versus DCIS in different age groups.

    Get PDF
    BackgroundIncreasing focus on potentially unnecessary diagnosis and treatment of certain breast cancers prompted our investigation of whether clinical and mammographic features predictive of invasive breast cancer versus ductal carcinoma in situ (DCIS) differ by age.MethodsWe analyzed 1,475 malignant breast biopsies, 1,063 invasive and 412 DCIS, from 35,871 prospectively collected consecutive diagnostic mammograms interpreted at University of California, San Francisco between 1/6/1997 and 6/29/2007. We constructed three logistic regression models to predict the probability of invasive cancer versus DCIS for the following groups: women ≥ 65 (older group), women 50-64 (middle age group), and women < 50 (younger group). We identified significant predictors and measured the performance in all models using area under the receiver operating characteristic curve (AUC).ResultsThe models for older and the middle age groups performed significantly better than the model for younger group (AUC = 0.848 vs, 0.778; p = 0.049 and AUC = 0.851 vs, 0.778; p = 0.022, respectively). Palpability and principal mammographic finding were significant predictors in distinguishing invasive from DCIS in all age groups. Family history of breast cancer, mass shape and mass margins were significant positive predictors of invasive cancer in the older group whereas calcification distribution was a negative predictor of invasive cancer (i.e. predicted DCIS). In the middle age group--mass margins, and in the younger group--mass size were positive predictors of invasive cancer.ConclusionsClinical and mammographic finding features predict invasive breast cancer versus DCIS better in older women than younger women. Specific predictive variables differ based on age

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Addressing the Challenge of Assessing Physician-Level Screening Performance: Mammography as an Example

    Get PDF
    <div><p>Background</p><p>Motivated by the challenges in assessing physician-level cancer screening performance and the negative impact of misclassification, we propose a method (using mammography as an example) that enables confident assertion of adequate or inadequate performance or alternatively recognizes when more data is required.</p><p>Methods</p><p>Using established metrics for mammography screening performance–cancer detection rate (CDR) and recall rate (RR)–and observed benchmarks from the Breast Cancer Surveillance Consortium (BCSC), we calculate the minimum volume required to be 95% confident that a physician is performing at or above benchmark thresholds. We graphically display the minimum observed CDR and RR values required to confidently assert adequate performance over a range of interpretive volumes. We use a prospectively collected database of consecutive mammograms from a clinical screening program outside the BCSC to illustrate how this method classifies individual physician performance as volume accrues.</p><p>Results</p><p>Our analysis reveals that an annual interpretive volume of 2770 screening mammograms, above the United States’ (US) mandatory (480) and average (1777) annual volumes but below England’s mandatory (5000) annual volume is necessary to confidently assert that a physician performed adequately. In our analyzed US practice, a single year of data uniformly allowed confident assertion of adequate performance in terms of RR but not CDR, which required aggregation of data across more than one year.</p><p>Conclusion</p><p>For individual physician quality assessment in cancer screening programs that target low incidence populations, considering imprecision in observed performance metrics due to small numbers of patients with cancer is important.</p></div

    Distribution of study population.

    No full text
    <p>*According to Rosenberg, et al. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0089418#pone.0089418-Rosenberg1" target="_blank">[19]</a>.</p
    corecore