17 research outputs found

    Genetic factors influencing a neurobiological substrate for psychiatric disorders

    Get PDF
    A retrospective meta-analysis of magnetic resonance imaging voxel-based morphometry studies proposed that reduced gray matter volumes in the dorsal anterior cingulate and the left and right anterior insular cortex-areas that constitute hub nodes of the salience network-represent a common substrate for major psychiatric disorders. Here, we investigated the hypothesis that the common substrate serves as an intermediate phenotype to detect genetic risk variants relevant for psychiatric disease. To this end, after a data reduction step, we conducted genome-wide association studies of a combined common substrate measure in four population-based cohorts (n = 2271), followed by meta-analysis and replication in a fifth cohort (n = 865). After correction for covariates, the heritability of the common substrate was estimated at 0.50 (standard error 0.18). The top single-nucleotide polymorphism (SNP) rs17076061 was associated with the common substrate at genome-wide significance and replicated, explaining 1.2% of the common substrate variance. This SNP mapped to a locus on chromosome 5q35.2 harboring genes involved in neuronal development and regeneration. In follow-up analyses, rs17076061 was not robustly associated with psychiatric disease, and no overlap was found between the broader genetic architecture of the common substrate and genetic risk for major depressive disorder, bipolar disorder, or schizophrenia. In conclusion, our study identified that common genetic variation indeed influences the common substrate, but that these variants do not directly translate to increased disease risk. Future studies should investigate gene-by-environment interactions and employ functional imaging to understand how salience network structure translates to psychiatric disorder risk

    Gene set enrichment analysis and expression pattern exploration implicate an involvement of neurodevelopmental processes in bipolar disorder

    Get PDF
    Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological information from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about biological processes to integrate functional sets of genes at strongly to moderately associated loci.We conducted gene set enrichment analyses (GSEA) using 2.3 million single-nucleotide polymorphisms, 397 Reactome pathways and 24,025 patients with BD and controls. RNA expression of implicated individual genes and gene sets were examined in post-mortem brains across lifespan.Two pathways showed a significant enrichment after correction for multiple comparisons in the GSEA: GRB2 events in ERBB2 signaling, for which 6 of 21 genes were BD associated (PFDR = 0.0377), and NCAM signaling for neurite out-growth, for which 11 out of 62 genes were BD associated (PFDR = 0.0451). Most pathway genes showed peaks of RNA co-expression during fetal development and infancy and mapped to neocortical areas and parts of the limbic system.Pathway associations were technically reproduced by two methods, although they were not formally replicated in independent samples. Gene expression was explored in controls but not in patients.Pathway analysis in large GWAS data of BD and follow-up of gene expression patterns in healthy brains provide support for an involvement of neurodevelopmental processes in the etiology of this neuropsychiatric disease. Future studies are required to further evaluate the relevance of the implicated genes on pathway functioning and clinical aspects of BD

    Susceptibility variants for male-pattern baldness on chromosome 20p11

    No full text
    We carried out a genome-wide association study in 296 individuals with male-pattern baldness (androgenetic alopecia) and 347 controls. We then investigated the 30 best SNPs in an independent replication sample and found highly significant association for five SNPs on chromosome 20p11 (rs2180439 combined P = 2.7 x 10(-15)). No interaction was detected with the X-chromosomal androgen receptor locus, suggesting that the 20p11 locus has a role in a yet-to-be-identified androgen-independent pathway

    Inherited genetic susceptibility to monoclonal gammopathy of unknown significance

    No full text
    Monoclonal gammopathy of undetermined significance (MGUS) is present in similar to 2% of individuals age >50 years. The increased risk of multiple myeloma (MM) in relatives of individuals with MGUS is consistent with MGUS being a marker of inherited genetic susceptibility to MM. Common single-nucleotide polymorphisms (SNPs) at 2p23.3 (rs6746082), 3p22.1 (rs1052501), 3q26.2 (rs10936599), 6p21.33 (rs2285803), 7p15.3 (rs4487645), 17p11.2 (rs4273077), and 22q13.1 (rs877529) have recently been shown to influence MM risk. To examine the impact of these 7 SNPs on MGUS, we analyzed two case-control series totaling 492 cases and 7306 controls. Each SNP independently influenced MGUS risk with statistically significant associations (P < .02) for rs1052501, rs2285803, rs4487645, and rs4273077. SNP associations were independent, with risk increasing with a larger number of risk alleles carried (per allele odds ratio, 1.18; P < 10(-7)). Collectively these data are consistent with a polygenic model of disease susceptibility to MGUS

    Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder

    No full text
    We conducted a genome-wide association study (GWAS) and a follow-up study of bipolar disorder (BD), a common neuropsychiatric disorder. In the GWAS, we investigated 499,494 autosomal and 12,484 X-chromosomal SNPs in 682 patients with BD and in 1300 controls. In the first follow-up step, we tested the most significant 48 SNPs in 1729 patients with BD and in 2313 controls. Eight SNPs showed nominally significant association with BD and were introduced to a meta-analysis of the GWAS and the first follow-up samples. Genetic variation in the neurocan gene (NCAN) showed genome-wide significant association with BD in 2411 patients and 3613 controls (rs1064395, p = 3.02 x 10(-8); odds ratio = 1.31). In a second follow-up step, we replicated this finding in independent samples of BD, totaling 6030 patients and 31,749 controls (p = 2.74 x 10(-4); odds ratio = 1.12). The combined analysis of all study samples yielded a p value of 2.14 x 10(-9) (odds ratio = 1.17). Our results provide evidence that rs1064395 is a common risk factor for BD. NCAN encodes neurocan, an extracellular matrix glycoprotein, which is thought to be involved in cell adhesion and migration. We found that expression in mice is localized within cortical and hippocampal areas. These areas are involved in cognition and emotion regulation and have previously been implicated in BD by neuropsychological, neuroimaging, and postmortem studies

    Genetic Associations with Valvular Calcification and Aortic Stenosis

    No full text
    Background Limited information is available regarding genetic contributions to valvular calcification, which is an important precursor of clinical valve disease. Methods We determined genomewide associations with the presence of aortic-valve calcification (among 6942 participants) and mitral annular calcification (among 3795 participants), as detected by computed tomographic (CT) scanning; the study population for this analysis included persons of white European ancestry from three cohorts participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium (discovery population). Findings were replicated in independent cohorts of persons with either CT-detected valvular calcification or clinical aortic stenosis. Results One SNP in the lipoprotein(a) (LPA) locus (rs10455872) reached genomewide significance for the presence of aortic-valve calcification (odds ratio per allele, 2.05; P = 9.0x10(-10)), a finding that was replicated in additional white European, African-American, and Hispanic-American cohorts (P<0.05 for all comparisons). Genetically determined Lp(a) levels, as predicted by LPA genotype, were also associated with aortic-valve calcification, supporting a causal role for Lp(a). In prospective analyses, LPA genotype was associated with incident aortic stenosis (hazard ratio per allele, 1.68; 95% confidence interval [CI], 1.32 to 2.15) and aortic-valve replacement (hazard ratio, 1.54; 95% CI, 1.05 to 2.27) in a large Swedish cohort; the association with incident aortic stenosis was also replicated in an independent Danish cohort. Two SNPs (rs17659543 and rs13415097) near the proinflammatory gene IL1F9 achieved genomewide significance for mitral annular calcification (P = 1.5x10(-8) and P = 1.8x10(-8), respectively), but the findings were not replicated consistently. Conclusions Genetic variation in the LPA locus, mediated by Lp(a) levels, is associated with aortic-valve calcification across multiple ethnic groups and with incident clinical aortic stenosis. (Funded by the National Heart, Lung, and Blood Institute and others.

    Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    Get PDF
    <p>Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 +/- 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 +/- 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 +/- 0.06 s.e.), and ADHD and major depressive disorder (0.32 +/- 0.07 s.e.), low between schizophrenia and ASD (0.16 +/- 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.</p>
    corecore