959 research outputs found

    Two-parameter estimation with three-mode NOON state in a symmetric three-well

    Full text link
    We propose a theoretical scheme to realize two-parameter estimation via a Bose-Einstein condensates confined in a symmetric triple-well. The three-mode NOON state is prepared adiabatically as the initial state. Two phase differences between the wells are two parameters to be estimated. With the help of classical and quantum Fisher information, we study the sensitivity of the triple-well on estimating two phase parameters simultaneously. The result shows that the precision of simultaneous estimation of two parameters in a triple-well system can reach the Heisenberg scaling

    Seroprevalence of Toxoplasma gondii infection in pet dogs in Lanzhou, Northwest China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, surveys of <it>Toxoplasma gondii </it>infection in dogs have been reported worldwide, including China. However, little is known about the prevalence of <it>T. gondii </it>in pet dogs in Northwest China. In the present study, the prevalence of <it>T. gondii </it>in pet dogs in Lanzhou, China was investigated using the modified agglutination test (MAT).</p> <p>Results</p> <p>In this survey, antibodies to <it>T. gondii </it>were found in 28 of 259 (10.81%) pet dogs, with MAT titers of 1:20 in 14 dogs, 1:40 in nine, 1:80 in four, and 1:160 or higher in one dog. The prevalence ranged from 6.67% to 16.67% among dogs of different ages, with low rates in young pet dogs, and high rates in older pet dogs. The seroprevalence in dogs >3 years old was higher than that in dogs ≤1 years old, but the difference was not statistically significant (<it>P ></it>0.05). The seroprevalence in male dogs was 12.50% (17 of 136), and in female dogs it was 8.94% (11 of 123), but the difference was not statistically significant (<it>P ></it>0.05).</p> <p>Conclusions</p> <p>A high prevalence of <it>T. gondii </it>infection was found in pet dogs in Lanzhou, Northwest China, which has implications for public health in this region. In order to reduce the risk of exposure to <it>T. gondii</it>, further measures and essential control strategies should be carried out rationally in this region.</p

    SegRap2023: A Benchmark of Organs-at-Risk and Gross Tumor Volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma

    Full text link
    Radiation therapy is a primary and effective NasoPharyngeal Carcinoma (NPC) treatment strategy. The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis. Previously, the delineation of GTVs and OARs was performed by experienced radiation oncologists. Recently, deep learning has achieved promising results in many medical image segmentation tasks. However, for NPC OARs and GTVs segmentation, few public datasets are available for model development and evaluation. To alleviate this problem, the SegRap2023 challenge was organized in conjunction with MICCAI2023 and presented a large-scale benchmark for OAR and GTV segmentation with 400 Computed Tomography (CT) scans from 200 NPC patients, each with a pair of pre-aligned non-contrast and contrast-enhanced CT scans. The challenge's goal was to segment 45 OARs and 2 GTVs from the paired CT scans. In this paper, we detail the challenge and analyze the solutions of all participants. The average Dice similarity coefficient scores for all submissions ranged from 76.68\% to 86.70\%, and 70.42\% to 73.44\% for OARs and GTVs, respectively. We conclude that the segmentation of large-size OARs is well-addressed, and more efforts are needed for GTVs and small-size or thin-structure OARs. The benchmark will remain publicly available here: https://segrap2023.grand-challenge.orgComment: A challenge report of SegRap2023 (organized in conjunction with MICCAI2023

    2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage

    Get PDF
    Black phosphorus (BP) is rediscovered as a 2D layered material. Since its first isolation in 2014, 2D BP has triggered tremendous interest in the fields of condensed matter physics, chemistry, and materials science. Given its unique puckered monolayer geometry, 2D BP displays many unprecedented properties and is being explored for use in numerous applications. The flexibility, large surface area, and good electric conductivity of 2D BP make it a promising electrode material for electrochemical energy storage devices (EESDs). Here, the experimental and theoretical progress of 2D BP is presented on the basis of its preparation methods. The structural and physiochemical properties, air instability, passivation, and EESD applications of 2D BP are discussed systemically. Specifically, the latest research findings on utilizing 2D BP in EESDs, such as lithium‐ion batteries, supercapacitors, and emerging technologies (lithium–sulfur batteries, magnesium‐ion batteries, and sodium‐ion batteries), are summarized. On the basis of the current progress, a few personal perspectives on the existing challenges and future research directions in this developing field are provided

    Patriotic Fun: Toys and Mobilization in China from the Republican to the Communist Era

    Get PDF
    This chapter explores the use of leisure to mobilize children in China from the 1910s to the early 1950s, in times of both war and peace. Drawing on normative advice, and commenting on youngsters’ reactions, it describes how ostensibly different regimes similarly deployed toys and play in order to foster children’s engagement in struggles of a political, commercial or military nature. It outlines how a variety of items - from so-called “educational” war toys to figurines and lanterns - could serve to rally children for the nation and familiarize war. The chapter argues that, although mobilization was construed as defensive, patriotic activism and acquaintance with the metaphorical or real battlefield were significant components of Chinese children’s upbringing from the beginning of the twentieth century

    Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel

    Get PDF
    A major use of the 1000 Genomes Project (1000GP) data is genotype imputation in genome-wide association studies (GWAS). Here we develop a method to estimate haplotypes from low-coverage sequencing data that can take advantage of single-nucleotide polymorphism (SNP) microarray genotypes on the same samples. First the SNP array data are phased to build a backbone (or 'scaffold') of haplotypes across each chromosome. We then phase the sequence data 'onto' this haplotype scaffold. This approach can take advantage of relatedness between sequenced and non-sequenced samples to improve accuracy. We use this method to create a new 1000GP haplotype reference set for use by the human genetic community. Using a set of validation genotypes at SNP and bi-allelic indels we show that these haplotypes have lower genotype discordance and improved imputation performance into downstream GWAS samples, especially at low-frequency variants. © 2014 Macmillan Publishers Limited. All rights reserved

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants
    corecore