83 research outputs found
ECG scoring for the evaluation of therapy-naïve cancer patients to predict cardiotoxicity
OBJECTIVE: To evaluate a new electrocardiographic (ECG) score reflecting domains of electrical and structural alterations in therapy-naïve cancer patients to assess their risk of cardiotoxicity. METHODS: We performed a retrospective analysis of 134 therapy-naïve consecutive cancer patients in our two university hospitals concerning four ECG score parameters: Contiguous Q-waves, markers of left ventricular (LV) hypertrophy, QRS duration and JTc prolongation. Cardiotoxicity was assessed after a short-term follow-up (up to 12 months). RESULTS: Of all the patients (n = 25), 19% reached 0 points, 50% (n = 67) reached 1 point, 25% (n = 33) reached 2 points, 5% (n = 7) reached 3 points and 0.7% reached 4 or 5 points (n = 1 respectively). The incidence of cardiotoxicity (n = 28 [21%]) increased with the ECG score, with 0 points at 0%, 1 point 7.5%, 2 points 55%, 3 points 71% and ≥3 points 50%. In the ROC (Receiver operating curves) analysis, the best cut-off for predicting cardiotoxicity was an ECG score of ≥2 points (sensitivity 82%, specificity 82%, AUC 0.84, 95% CI 0.77-0.92, p < 0.0001) which was then defined as a high-risk score. High-risk patients did not differ concerning their age, LV ejection fraction, classical cardiovascular risk factors or cardiac biomarkers compared to those with a low-risk ECG score. CONCLUSION: ECG scoring prior to the start of anti-cancer therapies may help to identify therapy-naïve cancer patients at a higher risk for the development of cardiotoxicity. SIMPLE SUMMARY: Due to improved survival upon effective anti-cancer therapies, the management of treatment-related side-effects is of increasing interest and importance. Cardiovascular side-effects of chemo-, targeted- and/or immunotherapies are common and can be harmful. To date, the identification of patients who could experience those cardiovascular side-effects prior to the anti-cancer therapy start is difficult. We show that the use of a simple electrocardiographic (ECG) score can help to predict the occurrence of cardiovascular toxicity of anti-cancer therapies
Assessment of coronary artery disease during hospitalization for cancer treatment
BACKGROUND: With improvement of cancer-specific survival, comorbidities and treatment-related side effects, particularly cardiovascular toxicities, need close attention. The aim of the present study was to evaluate clinical characteristics and outcomes of cancer patients requiring coronary angiography during inpatient care. METHODS: We performed a retrospective analysis of patients hospitalized between 02/2011 and 02/2018 in our two university hospital cancer centers. From a cohort of 60,676 cancer patients, we identified 153 patients (65.7 ± 11.6 years, 73.2% male), who underwent coronary angiography and were eligible for analysis. These were compared to a control group of 153 non-cancer patients pair-matched with respect to age, sex, and indication for catheterization. RESULTS: Cancer patients presented in 66% with an acute coronary syndrome (ACS). The most prevalent cancer entities were lymphoma (19%) and lung cancer (18.3%). The rate of primary percutaneous coronary interventions (PCI) was significantly lower in the cancer cohort (40.5% vs. 53.6%, p = 0.029), although manifestation of coronary artery disease (CAD) and PCI results were comparable (SYNergy between PCI with TAXus and cardiac surgery (SYNTAX)-score, delta pre- and post-PCI - 9.8 vs. - 8.0, p = 0.2). Mortality was remarkably high in cancer patients (1-year mortality 46% vs. 8% in non-cancer patients, p < 0.001), particularly with troponin-positive ACS (5-year mortality 71%). CONCLUSION: Strategies to effectively control cardiovascular risks in cancer patients are needed. Additionally, suspected CAD in cancer patients should not prevent prompt diagnostic clarification and optimal revascularization as PCI results in cancer patients are comparable to non-cancer patients and occurrence of troponin-positive ACS leads to a significantly increased risk of mortality
The Eurasian Modern Pollen Database (EMPD), version 2
The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959
The Eurasian Modern Pollen Database (EMPD), version 2
The Eurasian (nee European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60% from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).Peer reviewe
Testing the Effect of Relative Pollen Productivity on the REVEALS Model : A Validated Reconstruction of Europe-Wide Holocene Vegetation
Reliable quantitative vegetation reconstructions for Europe during the Holocene are crucial to improving our understanding of landscape dynamics, making it possible to assess the past effects of environmental variables and land-use change on ecosystems and biodiversity, and mitigating their effects in the future. We present here the most spatially extensive and temporally continuous pollen-based reconstructions of plant cover in Europe (at a spatial resolution of 1° × 1°) over the Holocene (last 11.7 ka BP) using the 'Regional Estimates of VEgetation Abundance from Large Sites' (REVEALS) model. This study has three main aims. First, to present the most accurate and reliable generation of REVEALS reconstructions across Europe so far. This has been achieved by including a larger number of pollen records compared to former analyses, in particular from the Mediterranean area. Second, to discuss methodological issues in the quantification of past land cover by using alternative datasets of relative pollen productivities (RPPs), one of the key input parameters of REVEALS, to test model sensitivity. Finally, to validate our reconstructions with the global forest change dataset. The results suggest that the RPPs.st1 (31 taxa) dataset is best suited to producing regional vegetation cover estimates for Europe. These reconstructions offer a long-term perspective providing unique possibilities to explore spatial-temporal changes in past land cover and biodiversity
The Eurasian Modern Pollen Database (EMPD), version 2
Abstract. The Eurasian (née European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).</jats:p
- …