85 research outputs found

    Pfam: clans, web tools and services

    Get PDF
    Pfam is a database of protein families that currently contains 7973 entries (release 18.0). A recent development in Pfam has enabled the grouping of related families into clans. Pfam clans are described in detail, together with the new associated web pages. Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented. Pfam is available on the web in the UK (http://www.sanger.ac.uk/Software/Pfam/), the USA (http://pfam.wustl.edu/), France (http://pfam.jouy.inra.fr/) and Sweden (http://pfam.cgb.ki.se/)

    Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding

    Get PDF
    We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics

    KG-Hub-building and exchanging biological knowledge graphs.

    Get PDF
    MOTIVATION: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking. RESULTS: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects. Current KG-Hub projects span use cases including COVID-19 research, drug repurposing, microbial-environmental interactions, and rare disease research. KG-Hub is equipped with tooling to easily analyze and manipulate KGs. KG-Hub is also tightly integrated with graph machine learning (ML) tools which allow automated graph ML, including node embeddings and training of models for link prediction and node classification. AVAILABILITY AND IMPLEMENTATION: https://kghub.org

    Global Genetic Structure and Molecular Epidemiology of Encapsulated Haemophilus influenzae

    Get PDF
    A collection of 2,209 isolates of six polysaccharide capsule types of Haemophilus influenzoe, including 1,975 serotype b isolates recovered in 30 countries was characterized for electrophoretically demonstrable allele profiles at 17 metabolic enzyme loci. Two hundred eighty distinct multilocus genotypes were distinguished, and cluster analysis revealed two primary phylogenetic divisions. The population structure of encapsulated H. influenzae is clonal. Currently, most of the invasive disease worldwide is caused by serotype b strains of nine clones, Strains producing serotype c, e, and f capsules belong to single divisions and have no close genetic relationships to strains of other serotypes, Serotype a and b strains occur in both primary phylogenetic divisions, probably as a result of transfer and recombination of serotype-specific sequences of the cap region between clonal lineages. A close genetic relatedness between serotype d isolates and some strains of serotypes a and b was identified, There are strong patterns of geographic variation, on an intercontinental scale, in both the extent of genetic diversity and the clonal composition of populations of encapsulated strains, The analysis suggests that the present distribution of clones is, in part, related to patterns of racial or ethnic differentiation and historical demographic movements of the human host population

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Communications Biophysics

    Get PDF
    Contains research objectives, summary of research and reports on four research projects.National Institutes of Health (Grant 5 P01 GM14940-05)National Institutes of Health (Grant 5 TOl GM01555-05)National Aeronautics and Space Administration (Grant NGL 22-009-304)B-D ElectrodyneBoston City Hospital Purchase Order 1065

    Differential Expression of miRNAs in Response to Topping in Flue-Cured Tobacco (Nicotiana tabacum) Roots

    Get PDF
    Topping is an important cultivating measure for flue-cured tobacco, and many genes had been found to be differentially expressed in response to topping. But it is still unclear how these genes are regulated. MiRNAs play a critical role in post-transcriptional gene regulation, so we sequenced two sRNA libraries from tobacco roots before and after topping, with a view to exploring transcriptional differences in miRNAs.Two sRNA libraries were generated from tobacco roots before and after topping. Solexa high-throughput sequencing of tobacco small RNAs revealed a total of 12,104,207 and 11,292,018 reads representing 3,633,398 and 3,084,102 distinct sequences before and after topping. The expressions of 136 conserved miRNAs (belonging to 32 families) and 126 new miRNAs (belonging to 77 families) were determined. There were three major conserved miRNAs families (nta-miR156, nta-miR172 and nta-miR171) and two major new miRNAs families (nta-miRn2 and nta-miRn26). All of these identified miRNAs can be folded into characteristic miRNA stem-loop secondary hairpin structures, and qRT-PCR was adopted to validate and measure the expression of miRNAs. Putative targets were identified for 133 out of 136 conserved miRNAs and 126 new miRNAs. Of these miRNAs whose targets had been identified, the miRNAs which change markedly (>2 folds) belong to 53 families and their targets have different biological functions including development, response to stress, response to hormone, N metabolism, C metabolism, signal transduction, nucleic acid metabolism and other metabolism. Some interesting targets for miRNAs had been determined.The differential expression profiles of miRNAs were shown in flue-cured tobacco roots before and after topping, which can be expected to regulate transcripts distinctly involved in response to topping. Further identification of these differentially expressed miRNAs and their targets would allow better understanding of the regulatory mechanisms for flue-cured tobacco response to topping

    The Monarch Initiative in 2024: an analytic platform integrating phenotypes, genes and diseases across species.

    Get PDF
    Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch\u27s APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch\u27s data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch\u27s analytic tools by developing a customized plugin for OpenAI\u27s ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app

    Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species

    Get PDF
    Background Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group. Results Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes, genes present in not all, but more than one strain, was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant 13 evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence. Conclusion Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan genome guarantees the species a quick and economical response to diverse environments
    corecore