17 research outputs found

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Is Public Capital Productive? Evidence from a Meta-analysis

    No full text
    Debate exists over the role that public investment must play in economic recovery and economic growth. The underlying idea behind this debate has much to do with the value of output elasticity of public capital. This article presents a meta-analysis of this elasticity, which was performed by considering almost 2,000 elasticities previously estimated from 145 papers. In addition, for each elasticity, we also take into account some 30 associated features relative to the methodology used for each case or relative to the characteristics of data samples. The obtained results reveal an average short-term elasticity of 0.13 (0.16 in the long term). We also find evidence of the importance of the methodology adopted for the obtained results, as well as the publication bias. Finally, we find a minor reduction in the value of the elasticity as public capital endowments increase. The results obtained highlight the positive and important effect of public investment on productivity. As a results of the value obtained, public investment will be self-financed in the long-term because of generated returns. But, we also find that the effectiveness of public investment has a clear influence of the institutional context

    Retrospective and prospective perspectives on zoonotic brucellosis

    No full text

    Network Effects of Public Transport Infrastructure: Evidence on Italian Regions

    No full text

    Genomic-based breeding for climate-smart peach varieties

    No full text
    Improving the performance of peach varieties in the context of climate change requires multiple approaches. Not only will climate change alter plant phenology, but it will also drive negative effects of several biotic and abiotic stressors. The challenge is to improve adaptation of varieties to a changing environment, while maintaining organoleptic qualities of the fruit. This chapter focuses on the progress in genomics-assisted breeding in peach to break barriers in conventional breeding. Breeding climate-smart (CS) peach trees requires the identification of CS traits used in the adaptation to high levels of temperature, CO2, water deprivation and biotic stress. Relevant CS traits, such as those that control flowering time (chilling and heat requirements), biotic and abiotic stress tolerance (pests and diseases; water-nutrient efficiency), require prioritization. Here, we review classical mapping and breeding of peach varieties, the progress and limitations of the used of marker-assisted selection and breeding (MAS and MAB, respectively) in expression of traits, such as fruit quality and stress tolerance, and describe the rationale for the use of molecular breeding.EEA San PedroFil: Gogorcena Aoiz, Yolanda. Consejo Superior de Investigaciones Científicas (CSIC). Estación Experimental Aula Dei; EspañaFil: Sánchez, Gerardo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Moreno-Vázquez Santiago. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas; EspañaFil: Pérez, Salvador. Centro de Recursos Geneticos y Mejoramiento de Prunus; MéxicoFil: Ksouri, Najla. Consejo Superior de Investigaciones Científicas (CSIC). Estación Experimental Aula Dei; Españ
    corecore