650 research outputs found

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Synthesis of Tapered CdS Nanobelts and CdSe Nanowires with Good Optical Property by Hydrogen-Assisted Thermal Evaporation

    Get PDF
    The tapered CdS nanobelts and CdSe nanowires were prepared by hydrogen-assisted thermal evaporation method. Different supersaturation leads to two different kinds of 1D nanostructures. The PL measurements recorded from the as-prepared tapered CdS nanobelts and CdSe nanowires show only a bandgap emission with relatively narrow full-width half maximum, which means that they possess good optical property. The as-synthesized high-quality tapered CdS nanobelts and CdSe nanowires may be excellent building blocks for photonic devices

    Phytoplankton evolution during the creation of a biofloc system for shrimp culture

    Full text link
    [EN] Microalgae play a key role in the dynamics of biofloc technology aquaculture systems. Some phytoplankton groups, such as diatoms, are desired for their high nutritional value and contribution to water quality. Other groups, such as cyanobacteria, are undesired because of their low nutritional value and capacity of producing toxins. So, monitoring the phytoplankton community structure and succession is key for managing biofloc systems. However, research on phytoplankton in these systems is scarce and mostly done by microscopy. The primary objective of this research was to estimate phytoplankton community structure in shrimp biofloc system water samples, using high-performance liquid chromatography methods and CHEMTAX software. The major groups present in our system were diatoms, euglenophytes, cyanobacteria and chlorophytes, while dinoflagellates were only remarkable at the initial period. We observed a clear dominance of diatoms all along the 5 months that comprised a complete biofloc system culture. The characteristic succession of autotrophic processes by heterotrophs of the biofloc systems, was observed by the reduction of net primary production. Light intensity played a key role in determining the phytoplankton composition and abundance. Algal pigment analyses using high-performance liquid chromatography and subsequent CHEMTAX analysis in water samples was useful for estimating the phytoplankton community structure in the biofloc systems. However, we found some limitations when the biofloc system was in heterotrophic mode. Under these conditions, some dinoflagellates and cyanobacteria behaved as heterotrophs and lost or decreased their biomarkers pigments. So, further research is needed to increase knowledge on the accuracy of high-performance liquid chromatography /CHEMTAX under these conditions.Financial support for this research was provided by Conselleria d’Educació, Investigació, Cultura i Esport of the Generalitat Valenciana, through the program VALi+D, fle number ACIF/2014/244. We would like to express our deepest thanks to Professor Luis Henrique da Silva Poersch of FURG (Universidade Federal do Rio Grande) and Ivan Vidal (Langostinos el Real) for his support. Finally, the authors wish to thank Le Gouessant and Michaël Metz for providing the commercial feed.Llario-Sempere, F.; Rodilla, M.; Escrivá-Perales, J.; Falco, S.; Sebastiá-Frasquet, M. (2018). Phytoplankton evolution during the creation of a biofloc system for shrimp culture. International Journal of Environmental Science and Technology. 1-12. https://doi.org/10.1007/s13762-018-1655-5S112Ahmed A, Kurian S, Gauns M, Chndrasekhararao AV, Mulla A, Naik B, Naik H, Naqvi SWA (2016) Spatial variability in phytoplankton community structure along the eastern Arabian Sea during the onset of south-west monsoon. Cont Shelf Res 119:30–39. https://doi.org/10.1016/j.csr.2016.03.005Avnimelech Y (1999) Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176:227–235. https://doi.org/10.1016/S0044-8486(99)00085-XAvnimelech Y (2007) Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture 264:140–147. https://doi.org/10.1016/j.aquaculture.2006.11.025Avnimelech Y (2009) Biofloc technology. A practical guide book. The World Aquaculture Society, Baton RougeAzim ME, Little DC (2008) The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283:29–35. https://doi.org/10.1016/j.aquaculture.2008.06.036Ballester ELC, Abreu PC, Cavalli RO, Emerenciano M, de Abreu L, Wasielesky WJ (2010) Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquac Nutr 16:163–172. https://doi.org/10.1111/j.1365-2095.2009.00648.xBaloi M, Arantes R, Schveitzer R, Magnotti C, Vinatea L (2013) Performance of Pacific white shrimp Litopenaeus vannamei raised in biofloc systems with varying levels of light exposure. Aquac Eng 52:39–44. https://doi.org/10.1016/j.aquaeng.2012.07.003Baumgarten MGZ, Wallner-Kersanach M, Niencheski LFH (2010) Manual de análises em oceanografia química. Furg, Rio GrandeBecerra-Dórame MJ, Martínez-Córdova LR, Martínez-Porchas M, Lopez-Elías JA (2011) Evaluation of autotrophic and heterotrophic microcosm- based systems on the production response of Litopenaeus vannamei intensively nursed without Artemia and with zero water exchange. Isr J Aquac Bamidgeh 63:7Brito LO, dos Santos IGS, de Abreu JL, de Araújo MT, Severi W, Gàlvez AO (2016) Effect of the addition of diatoms (Navicula spp.) and rotifers (Brachionus plicatilis) on water quality and growth of the Litopenaeus vannamei postlarvae reared in a biofloc system. Aquac Res 47:3990–3997. https://doi.org/10.1111/are.12849Campa-Córdova AI, Núñez-Vázquez EJ, Luna-González A, Romero-Geraldo MJ, Ascencio F (2009) Superoxide dismutase activity in juvenile Litopenaeus vannamei and Nodipecten subnodosus exposed to the toxic dinoflagellate Prorocentrum lima. Comp Biochem Physiol C Toxicol Pharmacol 149:317–322. https://doi.org/10.1016/j.cbpc.2008.08.006Casé M, Leça EE, Leitão SN, SantAnna EE, Schwamborn R, de Moraes Junior AT (2008) Plankton community as an indicator of water quality in tropical shrimp culture ponds. Mar Pollut Bull 56:1343–1352. https://doi.org/10.1016/j.marpolbul.2008.02.008Chen YC (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish culture. Aquaculture 195:71–80. https://doi.org/10.1016/S0044-8486(00)00540-8Correia ES, Wilkenfeld JS, Morris TC, Wei L, Prangnell DI, Samocha TM (2014) Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquac Eng 59:48–54. https://doi.org/10.1016/j.aquaeng.2014.02.002Duarte CM, Marrasé C, Vaqué D, Estrada M (1990) Counting error and the quantitative analysis of phytoplankton communities. J Plankton Res 12:295–304. https://doi.org/10.1093/plankt/12.2.295Ebeling J, Timmons M, Bisogni J (2006) Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture 257:346–358. https://doi.org/10.1016/j.aquaculture.2006.03.019El-Dahhar AA, Salama M, Elebiary EH (2015) Effect of energy to protein ratio in biofloc technology on water quality, survival and growth of mullet (Mugil cephalus). J Arab Aquac Soc 10:15–32. https://doi.org/10.12816/0026633Emerenciano MGC, Martínez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management. In: Tutu H (ed) water quality. InTech, Rijeka. https://doi.org/10.5772/66416Figueroa F, Niell F, Figueiras F, Villarino M (1998) Diel migration of phytoplankton and spectral light field in the Ria de Vigo (NW Spain). Mar Biol 130:491–499Gaona CAP, Poersch LH, Krummenauer D, Foes GK, Wasielesky WJ (2011) The effect of solids removal on water quality, growth and survival of Litopenaeus vannamei in a biofloc technology culture system. Int J Recirc Aquac. https://doi.org/10.21061/ijra.v12i1.1354Garrido JL, Airs RL, Rodríguez F, Van Heukelem L, Zapata M (2011) New HPLC separation techniques. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. University Press, Cambridge, pp 165–194Ge H, Li J, Chang Z, Chen P, Shen M, Zhao F (2016) Effect of microalgae with semicontinuous harvesting on water quality and zootechnical performance of white shrimp reared in the zero water exchange system. Aquac Eng 72–73:70–76. https://doi.org/10.1016/j.aquaeng.2016.04.006Godoy LC, Odebrecht C, Ballester E, Martins TG, Wasielesky WJ (2012) Effect of diatom supplementation during the nursery rearing of Litopenaeus vannamei (Boone, 1931) in a heterotrophic culture system. Aquac Int 20:559–569. https://doi.org/10.1007/s10499-011-9485-1Grasshoff K (1976) Methods of seawater analysis. Verlag Chemie: Weinstei, New YorkGreen BW, Schrader KK, Perschbacher PW (2014) Effect of stocking biomass on solids, phytoplankton communities, common off-flavors, and production parameters in a channel catfish biofloc technology production system. Aquac Res 45:1442–1458. https://doi.org/10.1111/are.12096Gris B, Sforza E, Morosinotto T, Bertucco A, La Rocca N (2017) Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. J Appl Phycol 29:1781–1790. https://doi.org/10.1007/s10811-017-1133-3Higgins HW, Wright SW, Schlüter L (2011) Quantitative interpretation of chemotaxonomic pigment data. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy, and applications in oceanography. Cambridge University Press, Cambridge, pp 257–313Hooker S, Firestone E, Claustre H, Ras J (2001) The first SeaWiFS HPLC analysis round-robin experiment (SeaHARRE-1). https://ntrs.nasa.gov/search.jsp?R=20010072242 . Accessed 19 July 2017Horabun T (1997) Relationships between water quality and phytoplankton in the Bangpakong river. http://agris.fao.org/agris-search/search.do?recordID=TH2000001898 . Accessed 19 July 2017Ismael AA (2003) Succession of heterotrophic and mixotrophic dinoflagellates as well as autotrophic microplankton in the harbour of Alexandria, Egypt. J Plankton Res 25:193–202. https://doi.org/10.1093/plankt/25.2.193Jeffrey SW, Sielicki M, Haxo FT (1975) Chloroplast pigment patterns in dinoflagellates. J Phycol 11:374–384. https://doi.org/10.1111/j.1529-8817.1975.tb02799.xJeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45:65–91. https://doi.org/10.1007/s12601-010-0007-2Jory DE, Cabrera TR, Dugger DM, Fegan D, Lee PG, Lawrence L, Jackson C, Mcintosh R, Castañeda J, International B, Park H, Hwy N, Pierce F (2001) A global review of shrimp feed management: status and perspectives. Aquaculture 318:104–152Ju ZY, Forster I, Conquest L, Dominy W, Kuo WC, Horgen FD (2008) Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac Res 39:118–133. https://doi.org/10.1111/j.1365-2109.2007.01856.xKingston MB (1999) Effect of light on vertical migration and photosynthesis of Euglena proxima (euglenophyta). J Phycol 35:245–253. https://doi.org/10.1046/j.1529-8817.1999.3520245.xLatasa M, Scharek R, Vidal M, Vila-Reixach G (2010) Preferences of phytoplankton groups for waters of different trophic status in the northwestern Mediterranean Sea. Mar Ecol Prog Ser 40:27–42. https://doi.org/10.3354/meps08559Li Y, Swift E, Buskey EJ (1996) Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (pyrrophyta). J Phycol 32:974–982. https://doi.org/10.1111/j.0022-3646.1996.00974.xLi A, Stoecker D, Adolf J (1999) Feeding, pigmentation, photosynthesis and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat Microb Ecol 19:163–176. https://doi.org/10.3354/ame019163Lin YC, Chen JC (2001) Acute toxicity of ammonia on Litopenaeus vannamei (Boone) juveniles at different salinity levels. J Exp Mar Biol Ecol 259:109–119. https://doi.org/10.1016/S0022-0981(01)00227-1Lin YC, Chen JC (2003) Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224:93–201. https://doi.org/10.1016/S0044-8486(03)00220-5Lohscheider JN, Strittmatter M, Küpper H, Adamska I, Heaney S, Cunningham C (2011) Vertical distribution of epibenthic freshwater cyanobacterial Synechococcus spp. Strains depends on their ability for photoprotection. PLoS ONE. https://doi.org/10.1371/journal.pone.0020134Lukwambe B, Qiuqian L, Wu J, Zhang D, Wang K, Zheng Z (2015) The effects of commercial microbial agents (probiotics) on phytoplankton community structure in intensive white shrimp (Litopenaeus vannamei) aquaculture ponds. Aquac Int 23:1443–1455. https://doi.org/10.1007/s10499-015-9895-6Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283Maicá PF, de Borba MR, Wasielesky WJ (2012) Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquac Res 43:361–370. https://doi.org/10.1111/j.1365-2109.2011.02838.xManan H, Moh JHZ, Kasan NA, Suratman S, Ikhwanuddin M (2016) Identification of biofloc microscopic composition as the natural bioremediation in zero water exchange of Pacific white shrimp, Penaeus vannamei, culture in closed hatchery system. Appl Water Sci. https://doi.org/10.1007/s13201-016-0421-4Marinho YF, Brito LO, Campos S, Severi W, Andrade HA, Galvez AO (2016) Effect of the addition of Chaetoceros calcitrans, Navicula sp. and Phaeodactylum tricornutum (diatoms) on phytoplankton composition and growth of Litopenaeus vannamei (Boone) postlarvae reared in a biofloc system. Aquac Res 48:4155–4164. https://doi.org/10.1111/are.13235Martins TG, Odebrecht C, Jensen LV, D’Oca MG, Wasielesky WJ (2016) The contribution of diatoms to bioflocs lipid content and the performance of juvenile Litopenaeus vannamei (Boone, 1931) in a BFT culture system. Aquac Res 47:1315–1326. https://doi.org/10.1111/are.12592Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5Natrah FMI, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T (2014) Significance of microalgal-bacterial interactions for aquaculture. Rev Aquac 6:48–61. https://doi.org/10.1111/raq.12024Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, Paerl H, Rakocinski C, Brouwer M, Levinson B, McDonald M (2004) Rationale for a new generation of indicators for coastal waters. Environ Health Perspect 112:979–986. https://doi.org/10.1289/ehp.6903Paerl H, Tucker C (1995) Ecology of blue-green algae in aquaculture ponds. J World Aquac 26:109–131. https://doi.org/10.1111/j.1749-7345.1995.tb00235.xPérez-Linares J, Ochoa JL, GagoMartínez A (2008) Effect of PSP toxins in white leg shrimp Litopenaeus vannamei Boone, 1931. J Food Sci 73:T69–T73. https://doi.org/10.1111/j.1750-3841.2008.00710.xPérez-Morales A, Band-Schmidt CJ, Martínez-Díaz SF (2017) Mortality on zoea stage of the Pacific white shrimp Litopenaeus vannamei caused by Cochlodinium polykrikoides (Dinophyceae) and Chattonella spp. (Raphidophyceae). Mar Biol 164:57. https://doi.org/10.1007/s00227-017-3083-3Ray AJ, Dillon KS, Lotz JM (2011) Water quality dynamics and shrimp (Litopenaeus vannamei) production in intensive, mesohaline culture systems with two levels of biofloc management. Aquac Eng 45:127–136. https://doi.org/10.1016/j.aquaeng.2011.09.001Schlüter L, Lauridsen T, Krogh G (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios–a comparison between pigment analysis by HPLC and microscopy. Freshwater 51:1474–1485. https://doi.org/10.1111/j.1365-2427.2006.01582.x/fullSchlüter L, Behl S, Striebel M, Stibor H (2016) Comparing microscopic counts and pigment analyses in 46 phytoplankton communities from lakes of different trophic state. Freshw Biol 61:1627–1639. https://doi.org/10.1111/fwb.12803Schrader KK, Green BW, Perschbacher PW (2011) Development of phytoplankton communities and common off-flavors in a biofloc technology system used for the culture of channel catfish (Ictalurus punctatus). Aquac Eng 45:118–126. https://doi.org/10.1016/j.aquaeng.2011.08.004Sebastiá M, Rodilla M (2013) Nutrient and phytoplankton analysis of a Mediterranean Coastal area. Environ Manage 51:225–240. https://doi.org/10.1007/s00267-012-9986-3Sebastiá M, Rodilla M, Sanchis J, Altur V (2012) Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agric Ecosyst Environ 152:10–20. https://doi.org/10.1016/j.agee.2012.02.006Seoane S, Garmendia M, Revilla M, Borja Á, Franco J, Orive E, Valencia V (2011) Phytoplankton pigments and epifluorescence microscopy as tools for ecological status assessment in coastal and estuarine waters, within the Water Framework. Mar Pollut 62:1484–1497. https://doi.org/10.1016/j.marpolbul.2011.04.010Sinden A, Sinang SC (2016) Cyanobacteria in aquaculture systems: linking the occurrence, abundance and toxicity with rising temperatures. Int J Environ Sci Technol 13:2855–2862. https://doi.org/10.1007/s13762-016-1112-2Sospedra J, Niencheski LFH, Falco S, Andrade CF, Attisano KK, Rodilla M (2017) Identifying the main sources of silicate in coastal waters of the Southern Gulf of Valencia (Western Mediterranean Sea). Oceanologia. https://doi.org/10.1016/j.oceano.2017.07.004Strickland J (1960) Measuring the production of marine phytoplankton. Bull Fish Res Bd Canada 122:172Ter Braak CJF (1994) Canonical community ordination. Part I: basic theory and linear methods. Écoscience 1:127–140. https://doi.org/10.1080/11956860.1994.11682237Ter Braak C, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). http://library.wur.nl/WebQuery/wurpubs/wever/341885 . Accessed 19 July 2017Utermohl M (1985) Zur Vervollkommnung der quantitative Phytoplankton-Methodik. Limnologie 9:1–38Van Wyk P, Scarpa J (1999) Water quality requirements and management. In: Institution Harbor Branch Oceanographic (ed) Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Florida, pp 128–138Vinatea L, Gálvez AO, Browdy CL, Stokes A, Venero J, Haveman J, Lewis BL, Lawson A, Shuler A, Leffler JW (2010) Photosynthesis, water respiration and growth performance of Litopenaeus vannamei in a super-intensive raceway culture with zero water exchange: interaction of water quality variables. Aquac Eng 42:17–24. https://doi.org/10.1016/j.aquaeng.2009.09.001Wright S, Jeffrey S, Mantoura R (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:186–196Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133. https://doi.org/10.1007/s10811-008-9341-5Yusoff FM, Zubaidah MS, Matias HB, Kwan TS (2002) Phytoplankton succession in intensive marine shrimp culture ponds treated with a commercial bacterial product. Aquac Res 33:269–278. https://doi.org/10.1046/j.1355-557x.2002.00671.

    The INT photometric H alpha Survey of the Northern Galactic Plane (IPHAS)

    Get PDF
    The Isaac Newton Telescope (INT) Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800-deg2 CCD survey of the northern Milky Way spanning the latitude range −5° < b < + 5° and reaching down to r′≃ 20 (10s). Representative observations and an assessment of point-source data from IPHAS, now underway, are presented. The data obtained are Wide Field Camera images in the Hα narrow-band, and Sloan r′ and i′ broad-band filters. We simulate IPHAS (r′−Hα, r′−i′) point-source colours using a spectrophotometric library of stellar spectra and available filter transmission profiles: this defines the expected colour properties of (i) solar metallicity stars, without Hα emission, and (ii) emission-line stars. Comparisons with observations of fields in Aquila show that the simulations of normal star colours reproduce the observations well for all spectral types earlier than M. A further comparison between colours synthesized from long-slit flux-calibrated spectra and IPHAS photometry for six objects in a Taurus field confirms the reliability of the pipeline calibration. Spectroscopic follow-up of a field in Cepheus shows that sources lying above the main stellar locus in the (r′− Hα, r′−i′) plane are confirmed to be emission-line objects with very few failures. In this same field, examples of Hα deficit objects (a white dwarf and a carbon star) are shown to be readily distinguished by their IPHAS colours. The role IPHAS can play in studies of spatially resolved northern Galactic nebulae is discussed briefly and illustrated by a continuum-subtracted mosaic image of Shajn 147 (a supernova remnant, 3° in diameter). The final catalogue of IPHAS point sources will contain photometry on about 80 million objects. Used on its own, or in combination with near-infrared photometric catalogues, IPHAS is a major resource for the study of stellar populations making up the disc of the Milky Way. The eventual yield of new northern emission-line objects from IPHAS is likely to be an order of magnitude increase on the number already known

    No Sun-like dynamo on the active star ζ Andromedae from starspot asymmetry

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via the DOI in this record.Sunspots are cool areas caused by strong surface magnetic fields inhibiting convection. Moreover, strong magnetic fields can alter the average atmospheric structure , degrading our ability to measure stellar masses and ages. Stars more active than the Sun have more and stronger dark spots than in the solar case, including on the rotational pole itself. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars than the Sun, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal . This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more spot activity), which are crucial constraints of dynamo theory. Polar spots, inferred only from Doppler tomography, could plausibly be observational artifacts, casting some doubt on their very existence. Here we report imaging of the old, magnetically-active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two epochs, while lower-latitude spot structures in both hemispheres do not persist between observations revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.National Science Foundation (NSF)Hungarian Academy of Science

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+K+μ+μB^+ \to K^+\mu^+\mu^-, B0K(892)0μ+μB^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0ϕ(1020)μ+μB^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+K+μ+μB^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0K0μ+μB^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0ϕμ+μdecayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let

    Search for a New Heavy Gauge Boson Wprime with Electron + missing ET Event Signature in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    We present a search for a new heavy charged vector boson WW^\prime decaying to an electron-neutrino pair in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96\unit{TeV}. The data were collected with the CDF II detector and correspond to an integrated luminosity of 5.3\unit{fb}^{-1}. No significant excess above the standard model expectation is observed and we set upper limits on σB(Weν)\sigma\cdot{\cal B}(W^\prime\to e\nu). Assuming standard model couplings to fermions and the neutrino from the WW^\prime boson decay to be light, we exclude a WW^\prime boson with mass less than 1.12\unit{TeV/}c^2 at the 95\unit{%} confidence level.Comment: 7 pages, 2 figures Submitted to PR

    Measurements of the properties of Lambda_c(2595), Lambda_c(2625), Sigma_c(2455), and Sigma_c(2520) baryons

    Get PDF
    We report measurements of the resonance properties of Lambda_c(2595)+ and Lambda_c(2625)+ baryons in their decays to Lambda_c+ pi+ pi- as well as Sigma_c(2455)++,0 and Sigma_c(2520)++,0 baryons in their decays to Lambda_c+ pi+/- final states. These measurements are performed using data corresponding to 5.2/fb of integrated luminosity from ppbar collisions at sqrt(s) = 1.96 TeV, collected with the CDF II detector at the Fermilab Tevatron. Exploiting the largest available charmed baryon sample, we measure masses and decay widths with uncertainties comparable to the world averages for Sigma_c states, and significantly smaller uncertainties than the world averages for excited Lambda_c+ states.Comment: added one reference and one table, changed order of figures, 17 pages, 15 figure

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    corecore