2,010 research outputs found

    Agreement of Anterior Segment Parameters Obtained From Swept-Source Fourier-Domain and Time-Domain Anterior Segment Optical Coherence Tomography.

    Get PDF
    PurposeTo assess the interdevice agreement between swept-source Fourier-domain and time-domain anterior segment optical coherence tomography (AS-OCT).MethodsFifty-three eyes from 41 subjects underwent CASIA2 and Visante OCT imaging. One hundred eighty-degree axis images were measured with the built-in two-dimensional analysis software for the swept-source Fourier-domain AS-OCT (CASIA2) and a customized program for the time-domain AS-OCT (Visante OCT). In both devices, we examined the angle opening distance (AOD), trabecular iris space area (TISA), angle recess area (ARA), anterior chamber depth (ACD), anterior chamber width (ACW), and lens vault (LV). Bland-Altman plots and intraclass correlation (ICC) were performed. Orthogonal linear regression assessed any proportional bias.ResultsICC showed strong correlation for LV (0.925) and ACD (0.992) and moderate agreement for ACW (0.801). ICC suggested good agreement for all angle parameters (0.771-0.878) except temporal AOD500 (0.743) and ARA750 (nasal 0.481; temporal 0.481). There was a proportional bias in nasal ARA750 (slope 2.44, 95% confidence interval [CI]: 1.95-3.18), temporal ARA750 (slope 2.57, 95% CI: 2.04-3.40), and nasal TISA500 (slope 1.30, 95% CI: 1.12-1.54). Bland-Altman plots demonstrated in all measured parameters a minimal mean difference between the two devices (-0.089 to 0.063); however, evidence of constant bias was found in nasal AOD250, nasal AOD500, nasal AOD750, nasal ARA750, temporal AOD500, temporal AOD750, temporal ARA750, and ACD. Among the parameters with constant biases, CASIA2 tends to give the larger numbers.ConclusionsBoth devices had generally good agreement. However, there were proportional and constant biases in most angle parameters. Thus, it is not recommended that values be used interchangeably

    Robomaths: Robotics to Learn Matematics in a Architecture Degree

    Get PDF
    The abstract part of mathematics is a difficult matter included in many subjects in university degrees. Specifically, in architecture degrees students lack interest in this topic if they don’t experience its immediate application. In addition, technological skills are required at every educational level and the students of these degrees are usually more interested in art than in technology. With the aim of encouraging architecture students' interest in mathematics and technology, a methodology is presented here that includes the use of robotics in maths lectures. The key idea is to make the abstract part of mathematics understandable by means of robots

    A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition

    Get PDF
    [EN] A necessity in the design of a path planning algorithm is to account for the environment. If the movement of the mobile robot is through a dynamic environment, the algorithm needs to include the main constraint: real-time collision avoidance. This kind of problem has been studied by different researchers suggesting different techniques to solve the problem of how to design a trajectory of a mobile robot avoiding collisions with dynamic obstacles. One of these algorithms is the artificial potential field (APF), proposed by O. Khatib in 1986, where a set of an artificial potential field is generated to attract the mobile robot to the goal and to repel the obstacles. This is one of the best options to obtain the trajectory of a mobile robot in real-time (RT). However, the main disadvantage is the presence of deadlocks. The mobile robot can be trapped in one of the local minima. In 1988, J.F. Canny suggested an alternative solution using harmonic functions satisfying the Laplace partial differential equation. When this article appeared, it was nearly impossible to apply this algorithm to RT applications. Years later a novel technique called proper generalized decomposition (PGD) appeared to solve partial differential equations, including parameters, the main appeal being that the solution is obtained once in life, including all the possible parameters. Our previous work, published in 2018, was the first approach to study the possibility of applying the PGD to designing a path planning alternative to the algorithms that nowadays exist. The target of this work is to improve our first approach while including dynamic obstacles as extra parameters.This research was funded by the GVA/2019/124 grant from Generalitat Valenciana and by the RTI2018-093521-B-C32 grant from the Ministerio de Ciencia, Innovacion y Universidades.Falcó, A.; Hilario, L.; Montés, N.; Mora, MC.; Nadal, E. (2020). A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition. Mathematics. 8(12):1-11. https://doi.org/10.3390/math8122245S111812Gonzalez, D., Perez, J., Milanes, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135-1145. doi:10.1109/tits.2015.2498841Rimon, E., & Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation, 8(5), 501-518. doi:10.1109/70.163777Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. The International Journal of Robotics Research, 5(1), 90-98. doi:10.1177/027836498600500106Kim, J.-O., & Khosla, P. K. (1992). Real-time obstacle avoidance using harmonic potential functions. IEEE Transactions on Robotics and Automation, 8(3), 338-349. doi:10.1109/70.143352Connolly, C. I., & Grupen, R. A. (1993). The applications of harmonic functions to robotics. Journal of Robotic Systems, 10(7), 931-946. doi:10.1002/rob.4620100704Garrido, S., Moreno, L., Blanco, D., & Martín Monar, F. (2009). Robotic Motion Using Harmonic Functions and Finite Elements. Journal of Intelligent and Robotic Systems, 59(1), 57-73. doi:10.1007/s10846-009-9381-3Bai, X., Yan, W., Cao, M., & Xue, D. (2019). Distributed multi‐vehicle task assignment in a time‐invariant drift field with obstacles. IET Control Theory & Applications, 13(17), 2886-2893. doi:10.1049/iet-cta.2018.6125Bai, X., Yan, W., Ge, S. S., & Cao, M. (2018). An integrated multi-population genetic algorithm for multi-vehicle task assignment in a drift field. Information Sciences, 453, 227-238. doi:10.1016/j.ins.2018.04.044Falcó, A., & Nouy, A. (2011). Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numerische Mathematik, 121(3), 503-530. doi:10.1007/s00211-011-0437-5Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-xFalcó, A., Montés, N., Chinesta, F., Hilario, L., & Mora, M. C. (2018). On the Existence of a Progressive Variational Vademecum based on the Proper Generalized Decomposition for a Class of Elliptic Parameterized Problems. Journal of Computational and Applied Mathematics, 330, 1093-1107. doi:10.1016/j.cam.2017.08.007Domenech, L., Falcó, A., García, V., & Sánchez, F. (2016). Towards a 2.5D geometric model in mold filling simulation. Journal of Computational and Applied Mathematics, 291, 183-196. doi:10.1016/j.cam.2015.02.043Falcó, A., & Nouy, A. (2011). A Proper Generalized Decomposition for the solution of elliptic problems in abstract form by using a functional Eckart–Young approach. Journal of Mathematical Analysis and Applications, 376(2), 469-480. doi:10.1016/j.jmaa.2010.12.003Falcó, A., & Hackbusch, W. (2012). On Minimal Subspaces in Tensor Representations. Foundations of Computational Mathematics, 12(6), 765-803. doi:10.1007/s10208-012-9136-6Canuto, C., & Urban, K. (2005). Adaptive Optimization of Convex Functionals in Banach Spaces. SIAM Journal on Numerical Analysis, 42(5), 2043-2075. doi:10.1137/s0036142903429730Ammar, A., Chinesta, F., & Falcó, A. (2010). On the Convergence of a Greedy Rank-One Update Algorithm for a Class of Linear Systems. Archives of Computational Methods in Engineering, 17(4), 473-486. doi:10.1007/s11831-010-9048-

    Real-Time Path Planning Based on Harmonic Functions under a Proper Generalized Decomposition-Based Framework

    Get PDF
    This paper presents a real-time global path planning method for mobile robots using harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition (PGD) of these functions. The main property of the proposed technique is that the computational cost is negligible in real-time, even if the robot is disturbed or the goal is changed. The main idea of the method is the off-line generation, for a given environment, of the whole set of paths from any start and goal configurations of a mobile robot, namely the computational vademecum, derived from a harmonic potential field in order to use it on-line for decision-making purposes. Up until now, the resolution of the Laplace or Poisson equations has been based on traditional numerical techniques unfeasible for real-time calculation. This drawback has prevented the extensive use of harmonic functions in autonomous navigation, despite their powerful properties. The numerical technique that reverses this situation is the Proper Generalized Decomposition. To demonstrate and validate the properties of the PGD-vademecum in a potential-guided path planning framework, both real and simulated implementations have been developed. Simulated scenarios, such as an L-Shaped corridor and a benchmark bug trap, are used, and a real navigation of a LEGO®MINDSTORMS robot running in static environments with variable start and goal configurations is shown. This device has been selected due to its computational and memory-restricted capabilities, and it is a good example of how its properties could help the development of social robots

    DNA hypomethylation affects cancer-related biological functions and genes relevant in neuroblastoma pathogenesis

    Get PDF
    Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation

    Present and future of parkinson’s disease in Spain: Parkinson-2030 delphi project

    Get PDF
    Parkinson’s disease (PD) is a chronic progressive and irreversible disease and the second most common neurodegenerative disease worldwide. In Spain, it affects around 120.000–150.000 individuals, and its prevalence is estimated to increase in the future. PD has a great impact on patients’ and caregivers’ lives and also entails a substantial socioeconomic burden. The aim of the present study was to examine the current situation and the 10-year PD forecast for Spain in order to optimize and design future management strategies. This study was performed using the modified Delphi method to try to obtain a consensus among a panel of movement disorders experts. According to the panel, future PD management will improve diagnostic capacity and follow-up, it will include multidisciplinary teams, and innovative treatments will be developed. The expansion of new technologies and studies on biomarkers will have an impact on future PD management, leading to more accurate diagnoses, prognoses, and individualized therapies. However, the socio-economic impact of the disease will continue to be significant by 2030, especially for patients in advanced stages. This study highlighted the unmet needs in diagnosis and treatment and how crucial it is to establish recommendations for future diagnostic and therapeutic management of PD.This project was funded by Zambon S.A.U

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance
    corecore