849 research outputs found

    D=5 M-theory radion supermultiplet dynamics

    Get PDF
    We show how the bosonic sector of the radion supermultiplet plus d=4, N=1 supergravity emerge from a consistent braneworld Kaluza-Klein reduction of D=5 M--theory. The radion and its associated pseudoscalar form an SL(2,R)/U(1) nonlinear sigma model. This braneworld system admits its own brane solution in the form of a 2-supercharge supersymmetric string. Requiring this to be free of singularities leads to an SL(2,Z) identification of the sigma model target space. The resulting radion mode has a minimum length; we suggest that this could be used to avoid the occurrence of singularities in brane-brane collisions. We discuss possible supersymmetric potentials for the radion supermultiplet and their relation to cosmological models such as the cyclic universe or hybrid inflation.Comment: 18 pages, 4 figures, plain Late

    The role of aerodynamic forces in a mathematical model for suspension bridges

    Full text link
    In a fish-bone model for suspension bridges studied by us in a previous paper we introduce linear aerodynamic forces. We numerically analyze the role of these forces and we theoretically show that they do not influence the onset of torsional oscillations. This suggests a new explanation for the origin of instability in suspension bridges: it is a combined interaction between structural nonlinearity and aerodynamics and it follows a precise pattern. This gives an answer to a long-standing question about the origin of torsional instability in suspension bridges

    Two-point microrheology and the electrostatic analogy

    Full text link
    The recent experiments of Crocker et al. suggest that microrheological measurements obtained from the correlated fluctuations of widely-separatedprobe particles determine the rheological properties of soft, complex materials more accurately than do the more traditional particle autocorrelations. This presents an interesting problem in viscoelastic dynamics. We develop an important, simplifing analogy between the present viscoelastic problem and classical electrostatics. Using this analogy and direct calculation we analyze both the one and two particle correlations in a viscoelastic medium in order to explain this observation

    Electric charge quantization and the muon anomalous magnetic moment

    Get PDF
    We investigate some proposals to solve the electric charge quantization puzzle, which simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the Electro-Weak Standard Model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems.Comment: 20 pages, 1 figures, needs macro axodraw.st

    Mirror Matter as Self Interacting Dark Matter

    Get PDF
    It has been argued that the observed core density profile of galaxies is inconsistent with having a dark matter particle that is collisionless and alternative dark matter candidates which are self interacting may explain observations better. One new class of self interacting dark matter that has been proposed in the context mirror universe models of particle physics is the mirror hydrogen atom whose stability is guaranteed by the conservation of mirror baryon number. We show that the effective transport cross section for mirror hydrogen atoms, has the right order of magnitude for solving the ``cuspy'' halo problem. Furthermore, the suppression of dissipation effects for mirror atoms due to higher mirror mass scale prevents the mirror halo matter from collapsing into a disk strengthening the argument for mirror matter as galactic dark matter.Comment: 6 pages; some references adde

    Momentum state engineering and control in Bose-Einstein condensates

    Full text link
    We demonstrate theoretically the use of genetic learning algorithms to coherently control the dynamics of a Bose-Einstein condensate. We consider specifically the situation of a condensate in an optical lattice formed by two counterpropagating laser beams. The frequency detuning between the lasers acts as a control parameter that can be used to precisely manipulate the condensate even in the presence of a significant mean-field energy. We illustrate this procedure in the coherent acceleration of a condensate and in the preparation of a superposition of prescribed relative phase.Comment: 9 pages incl. 6 PostScript figures (.eps), LaTeX using RevTeX, submitted to Phys. Rev. A, incl. small modifications, some references adde

    Generalized twisted modules associated to general automorphisms of a vertex operator algebra

    Full text link
    We introduce a notion of strongly C^{\times}-graded, or equivalently, C/Z-graded generalized g-twisted V-module associated to an automorphism g, not necessarily of finite order, of a vertex operator algebra. We also introduce a notion of strongly C-graded generalized g-twisted V-module if V admits an additional C-grading compatible with g. Let V=\coprod_{n\in \Z}V_{(n)} be a vertex operator algebra such that V_{(0)}=\C\one and V_{(n)}=0 for n<0 and let u be an element of V of weight 1 such that L(1)u=0. Then the exponential of 2\pi \sqrt{-1} Res_{x} Y(u, x) is an automorphism g_{u} of V. In this case, a strongly C-graded generalized g_{u}-twisted V-module is constructed from a strongly C-graded generalized V-module with a compatible action of g_{u} by modifying the vertex operator map for the generalized V-module using the exponential of the negative-power part of the vertex operator Y(u, x). In particular, we give examples of such generalized twisted modules associated to the exponentials of some screening operators on certain vertex operator algebras related to the triplet W-algebras. An important feature is that we have to work with generalized (twisted) V-modules which are doubly graded by the group C/Z or C and by generalized eigenspaces (not just eigenspaces) for L(0), and the twisted vertex operators in general involve the logarithm of the formal variable.Comment: Final version to appear in Comm. Math. Phys. 38 pages. References on triplet W-algebras added, misprints corrected, and expositions revise

    Scaling to the end of silicon with EDGE architectures

    Full text link

    Optical Properties of III-Mn-V Ferromagnetic Semiconductors

    Full text link
    We review the first decade of extensive optical studies of ferromagnetic, III-Mn-V diluted magnetic semiconductors. Mn introduces holes and local moments to the III-V host, which can result in carrier mediated ferromagnetism in these disordered semiconductors. Spectroscopic experiments provide direct access to the strength and nature of the exchange between holes and local moments; the degree of itineracy of the carriers; and the evolution of the states at the Fermi energy with doping. Taken together, diversity of optical methods reveal that Mn is an unconventional dopant, in that the metal to insulator transition is governed by the strength of the hybridization between Mn and its p-nictogen neighbor. The interplay between the optical, electronic and magnetic properties of III-Mn-V magnetic semiconductors is of fundamental interest and may enable future spin-optoelectronic devices.Comment: Topical Revie

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio
    • 

    corecore