1,474 research outputs found
Spatially Uniform ReliefF (SURF) for computationally-efficient filtering of gene-gene interactions
<p>Abstract</p> <p>Background</p> <p>Genome-wide association studies are becoming the de facto standard in the genetic analysis of common human diseases. Given the complexity and robustness of biological networks such diseases are unlikely to be the result of single points of failure but instead likely arise from the joint failure of two or more interacting components. The hope in genome-wide screens is that these points of failure can be linked to single nucleotide polymorphisms (SNPs) which confer disease susceptibility. Detecting interacting variants that lead to disease in the absence of single-gene effects is difficult however, and methods to exhaustively analyze sets of these variants for interactions are combinatorial in nature thus making them computationally infeasible. Efficient algorithms which can detect interacting SNPs are needed. ReliefF is one such promising algorithm, although it has low success rate for noisy datasets when the interaction effect is small. ReliefF has been paired with an iterative approach, Tuned ReliefF (TuRF), which improves the estimation of weights in noisy data but does not fundamentally change the underlying ReliefF algorithm. To improve the sensitivity of studies using these methods to detect small effects we introduce Spatially Uniform ReliefF (SURF).</p> <p>Results</p> <p>SURF's ability to detect interactions in this domain is significantly greater than that of ReliefF. Similarly SURF, in combination with the TuRF strategy significantly outperforms TuRF alone for SNP selection under an epistasis model. It is important to note that this success rate increase does not require an increase in algorithmic complexity and allows for increased success rate, even with the removal of a nuisance parameter from the algorithm.</p> <p>Conclusion</p> <p>Researchers performing genetic association studies and aiming to discover gene-gene interactions associated with increased disease susceptibility should use SURF in place of ReliefF. For instance, SURF should be used instead of ReliefF to filter a dataset before an exhaustive MDR analysis. This change increases the ability of a study to detect gene-gene interactions. The SURF algorithm is implemented in the open source Multifactor Dimensionality Reduction (MDR) software package available from <url>http://www.epistasis.org</url>.</p
Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS
Motivation: Epistasis, the presence of gene–gene interactions, has been hypothesized to be at the root of many common human diseases, but current genome-wide association studies largely ignore its role. Multifactor dimensionality reduction (MDR) is a powerful model-free method for detecting epistatic relationships between genes, but computational costs have made its application to genome-wide data difficult. Graphics processing units (GPUs), the hardware responsible for rendering computer games, are powerful parallel processors. Using GPUs to run MDR on a genome-wide dataset allows for statistically rigorous testing of epistasis
Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies
We would like to thank all patients whose samples were used in this study. We are also thankful to the Northern Ireland Biobank and Grampian Biorepository for providing us with tissue blocks and patient data; and Dr HG Coleman (Queen’s University Belfast) for her advice on statistical analyses. This work has been carried out with financial support from Cancer Research UK (grant: C11512/A18067), Experimental Cancer Medicine Centre Network (grant: C36697/A15590 from Cancer Research UK and the NI Health and Social Care Research and Development Division), the Sean Crummey Memorial Fund and the Tom Simms Memorial Fund. The Northern Ireland Biobank is funded by HSC Research and Development Division of the Public Health Agency in Northern Ireland and Cancer Research UK through the Belfast CRUK Centre and the Northern Ireland Experimental Cancer Medicine Centre; additional support was received from Friends of the Cancer Centre. The Northern Ireland Molecular Pathology Laboratory which is responsible for creating resources for the Northern Ireland Biobank has received funding from Cancer Research UK, Friends of the Cancer Centre and Sean Crummey Foundation.Peer reviewedPublisher PD
Rare discovery of sacral “ribs”: a cadaveric case report
Supernumerary ribs are a well-documented congenital anomaly that can occur at any point of the vertebral column, most commonly in the cervical or lumbar region. However, accessory ribs found in the sacrococcygeal region are exceptionally rare and may be difficult to distinguish from other bony manifestations of the pelvic girdle. During cadaveric dissection, a pair of sacral “ribs” were found projecting from the left posterolateral sacral region. The bony projections shared a broad base from the posterior sacrum. The projections followed an anteroinferior trajectory, mimicking the thoracic rib structure. Computed tomography (CT) revealed further bony anomalies, including bilateral ossifications embedded in the sacrotuberous ligament, and a blunt bony protrusion extending toward the ischial spine. Most documented supernumerary ribs in the lumbar and sacrococcygeal regions are asymptomatic and are incidental findings in radiographic studies during the exploration of other medical complaints. Correlated symptoms mentioned in the literature include pelvic pain and decreased hip range of motion, with potential obstetric complications. Owing to their asymptomatic nature, sacral ribs may be underreported. The primary aim of this report is to provide a detailed description of these sacral “ribs” in the unique setting of a cadaveric dissection supplemented with medical imaging to enhance visualization
A Survey on Continuous Time Computations
We provide an overview of theories of continuous time computation. These
theories allow us to understand both the hardness of questions related to
continuous time dynamical systems and the computational power of continuous
time analog models. We survey the existing models, summarizing results, and
point to relevant references in the literature
Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability
Authigenic carbonates are intercalated with massive gas hydrates in sediments of the Cascadia margin. The deposits were recovered from the uppermost 50 cm of sediments on the southern summit of the Hydrate Ridge during the RV Sonne cruise SO110. Two carbonate lithologies that differ in chemistry, mineralogy, and fabric make up these deposits. Microcrystalline high-magnesium calcite (14 to 19 mol% MgCO3) and aragonite are present in both semiconsolidated sediments and carbonate-cemented clasts. Aragonite occurs also as a pure phase without sediment impurities. It is formed by precipitation in cavities as botryoidal and isopachous aggregates within pure white, massive gas hydrate. Variations in oxygen isotope values of the carbonates reflect the mineralogical composition and define two end members: a Mg-calcite with δ18O =4.86‰ PDB and an aragonite with δ18O =3.68‰ PDB. On the basis of the ambient bottom-water temperature and accepted equations for oxygen isotope fractionation, we show that the aragonite phase formed in equilibrium with its pore-water environment, and that the Mg-calcite appears to have precipitated from pore fluids enriched in 18O. Oxygen isotope enrichment probably originates from hydrate water released during gas-hydrate destabilization
Contrasting Decollement and Prism Properties over the Sumatra 2004-2005 Earthquake Rupture Boundary
Styles of subduction zone deformation and earthquake rupture dynamics are strongly linked, jointly influencing hazard potential. Seismic reflection profiles across the trench west of Sumatra, Indonesia, show differences across the boundary between the major 2004 and 2005 plate interface earthquakes, which exhibited contrasting earthquake rupture and tsunami generation. In the southern part of the 2004 rupture, we interpret a negative-polarity sedimentary reflector ~500 meters above the subducting oceanic basement as the seaward extension of the plate interface. This predécollement reflector corresponds to unusual prism structure, morphology, and seismogenic behavior that are absent along the 2005 rupture zone. Although margins like the 2004 rupture zone are globally rare, our results suggest that sediment properties influence earthquake rupture, tsunami hazard, and prism development at subducting plate boundaries
Search for R-parity Violating Supersymmetry in Dimuon and Four-Jets Channel
We present results of a search for R-parity-violating decay of the neutralino
chi_1^0, taken to be the Lightest Supersymmetric Particle. It is assumed that
this decay proceeds through one of the lepton-number violating couplings
lambda-prime_2jk (j=1,2; k=1,2,3). This search is based on 77.5 pb-1 of data,
collected by the D0 experiment at the Fermilab Tevatron in ppbar collisions at
a center of mass energy of 1.8 TeV in 1992-1995.Comment: 10 pages, 3 figure
- …