183 research outputs found

    An integrated hierarchical classification and machine learning approach for mapping land use and land cover in complex social-ecological systems

    Get PDF
    Mapping land use and land cover (LULC) using remote sensing is fundamental to environmental monitoring, spatial planning and characterising drivers of change in landscapes. We develop a new, general and versatile approach for mapping LULC in landscapes with relatively gradual transition between LULC categories such as African savannas. The approach integrates a well-tested hierarchical classification system with the computationally efficient random forest (RF) classifier and produces detailed, accurate and consistent classification of structural vegetation heterogeneity and density and anthropogenic land use. We use Landsat 8 OLI imagery to illustrate this approach for the Extended Greater Masai Mara Ecosystem (EGMME) in southwestern Kenya. We stratified the landscape into eight relatively homogeneous zones, systematically inspected the imagery and randomly allocated 1,697 training sites, 556 of which were ground-truthed, proportionately to the area of each zone. We directly assessed the accuracy of the visually classified image. Accuracy was high and averaged 88.1% (80.5%–91.7%) across all the zones and 89.1% (50%–100%) across all the classes. We applied the RF classifier to randomly selected samples from the original training dataset, separately for each zone and the EGMME. We evaluated the overall and class-specific accuracy and computational efficiency using the Out-of-Bag (OOB) error. Overall accuracy (79.3%–97.4%) varied across zones but was higher whereas the class-specific accuracy (25.4%–98.1%) was lower than that for the EGMME (80.2%). The hierarchical classifier identified 35 LULC classes which we aggregated into 18 intermediate mosaics and further into five more general categories. The open grassed shrubland (21.8%), sparse shrubbed grassland (10.4%) and small-scale cultivation (13.3%) dominated at the detailed level, grassed shrubland (31.9%) and shrubbed grassland (28.9%) at the intermediate level, and grassland (35.7%), shrubland (35.3%) and woodland (12.5%) at the general level. Our granular LULC map for the EGMME is sufficiently accurate for important practical purposes such as land use spatial planning, habitat suitability assessment and temporal change detection. The extensive ground-truthing data, sample site photos and classified maps can contribute to wider validation efforts at regional to global scales

    Projected climate change in Kenya ASALs

    Get PDF
    The presentation provides stark information on temperature changes, projected rainfall, and cattle distribution in Kenya’s arid and semi-arid lands. There is growing evidence of escalating wildlife losses documented for large parts of Africa, linked with increasing livestock numbers. Livestock biomass was 8.1 times greater than that of wildlife in 2011 - 2013 compared to 3.5 times in 1977- 1980. Kenya national and country strategies (county integrated development plan (CIDP)and spatial plans) must include climate change strategies

    The adoption of ChatGPT marks the beginning of a new era in educational platforms

    Get PDF
    Technology has significantly transformed knowledge, education, and access to information by introducing online learning platforms, interactive games, and virtual reality simulations in traditional classrooms, creating a dynamic, engaging, and inclusive learning environment. The ChatGBT project (a pre-developed transformer for training) is a remarkable achievement in artificial intelligence technology. It allows students tailored and efficient learning experiences by providing individual feedback and explanations. ChatGPT e-learning platform has been extensively studied for its adoption and acceptance, but there is a significant gap in research on its acceptability and use, highlighting the need for further exploration. The goal of this work is to bridge this disparity by introducing a comprehensive model that includes three basic elements: performance expectation, expected effort, and social impact. A total of 241 graduate students were surveyed and their data were analyzed using structural equation modeling techniques. The results indicate that “expectation of performance and expected effort” have the greatest impact and importance in determining students’ intentions to use learning platforms via ChatGPT, while social influence does not play an important role. This study enhances the current body of knowledge related to artificial intelligence and environmental sustainability, and provides important insights for professionals, policymakers, and producers of artificial intelligence products. These observations may provide guidance for creating and implementing artificial intelligence technologies to match consumers’ needs and preferences more effectively, while also taking into account broader environmental conditions

    EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy

    Get PDF
    Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs*5, p.Arg417*, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0–49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Novel derivative of aminobenzenesulfonamide (3c) induces apoptosis in colorectal cancer cells through ROS generation and inhibits cell migration

    Get PDF
    Background: Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. New anti-cancer agents are needed for treating late stage colorectal cancer as most of the deaths occur due to cancer metastasis. A recently developed compound, 3c has shown to have potent antitumor effect; however the mechanism underlying the antitumor effect remains unknown. Methods: 3c-induced inhibition of proliferation was measured in the absence and presence NAC using MTT in HT-29 and SW620 cells and xCELLigence RTCA DP instrument. 3c-induced apoptotic studies were performed using flow cytometry. 3c-induced redox alterations were measured by ROS production using fluorescence plate reader and flow cytometry and mitochondrial membrane potential by flow cytometry; NADPH and GSH levels were determined by colorimetric assays. Bcl2 family protein expression and cytochrome c release and PARP activation was done by western blotting. Caspase activation was measured by ELISA. Cell migration assay was done using the real time xCELLigence RTCA DP system in SW620 cells and wound healing assay in HT-29. Results: Many anticancer therapeutics exert their effects by inducing reactive oxygen species (ROS). In this study, we demonstrate that 3c-induced inhibition of cell proliferation is reversed by the antioxidant, N-acetylcysteine, suggesting that 3c acts via increased production of ROS in HT-29 cells. This was confirmed by the direct measurement of ROS in 3c-treated colorectal cancer cells. Additionally, treatment with 3c resulted in decreased NADPH and glutathione levels in HT-29 cells. Further, investigation of the apoptotic pathway showed increased release of cytochrome c resulting in the activation of caspase-9, which in turn activated caspase-3 and −6. 3c also (i) increased p53 and Bax expression, (ii) decreased Bcl2 and BclxL expression and (iii) induced PARP cleavage in human colorectal cancer cells. Confirming our observations, NAC significantly inhibited induction of apoptosis, ROS production, cytochrome c release and PARP cleavage. The results further demonstrate that 3c inhibits cell migration by modulating EMT markers and inhibiting TGFβ-induced phosphorylation of Smad2 and Samd3. Conclusions: Our findings thus demonstrate that 3c disrupts redox balance in colorectal cancer cells and support the notion that this agent may be effective for the treatment of colorectal cancer
    corecore