20 research outputs found
A Multiscale Pyramid Transform for Graph Signals
Multiscale transforms designed to process analog and discrete-time signals
and images cannot be directly applied to analyze high-dimensional data residing
on the vertices of a weighted graph, as they do not capture the intrinsic
geometric structure of the underlying graph data domain. In this paper, we
adapt the Laplacian pyramid transform for signals on Euclidean domains so that
it can be used to analyze high-dimensional data residing on the vertices of a
weighted graph. Our approach is to study existing methods and develop new
methods for the four fundamental operations of graph downsampling, graph
reduction, and filtering and interpolation of signals on graphs. Equipped with
appropriate notions of these operations, we leverage the basic multiscale
constructs and intuitions from classical signal processing to generate a
transform that yields both a multiresolution of graphs and an associated
multiresolution of a graph signal on the underlying sequence of graphs.Comment: 16 pages, 13 figure