309 research outputs found

    Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves

    Get PDF
    A method is proposed for accurately describing arbitrary-shaped free boundaries in single-grid finite-difference schemes for elastodynamics, in a time-domain velocity-stress framework. The basic idea is as follows: fictitious values of the solution are built in vacuum, and injected into the numerical integration scheme near boundaries. The most original feature of this method is the way in which these fictitious values are calculated. They are based on boundary conditions and compatibility conditions satisfied by the successive spatial derivatives of the solution, up to a given order that depends on the spatial accuracy of the integration scheme adopted. Since the work is mostly done during the preprocessing step, the extra computational cost is negligible. Stress-free conditions can be designed at any arbitrary order without any numerical instability, as numerically checked. Using 10 grid nodes per minimal S-wavelength with a propagation distance of 50 wavelengths yields highly accurate results. With 5 grid nodes per minimal S-wavelength, the solution is less accurate but still acceptable. A subcell resolution of the boundary inside the Cartesian meshing is obtained, and the spurious diffractions induced by staircase descriptions of boundaries are avoided. Contrary to what occurs with the vacuum method, the quality of the numerical solution obtained with this method is almost independent of the angle between the free boundary and the Cartesian meshing.Comment: accepted and to be published in Geophys. J. In

    On the initiation of sustained slip-weakening ruptures by localized stresses

    Get PDF
    Numerical simulations of dynamic earthquake rupture require an artificial initiation procedure, if they are not integrated in long-term earthquake cycle simulations. A widely applied procedure involves an ‘overstressed asperity’, a localized region stressed beyond the static frictional strength. The physical properties of the asperity (size, shape and overstress) may significantly impact rupture propagation. In particular, to induce a sustained rupture the asperity size needs to exceed a critical value. Although criteria for estimating the critical nucleation size under linear slip-weakening friction have been proposed for 2-D and 3-D problems based on simplifying assumptions, they do not provide general rules for designing 3-D numerical simulations. We conduct a parametric study to estimate parameters of the asperity that minimize numerical artefacts (e.g. changes of rupture shape and speed, artificial supershear transition, higher slip-rate amplitudes). We examine the critical size of square, circular and elliptical asperities as a function of asperity overstress and background (off-asperity) stress. For a given overstress, we find that asperity area controls rupture initiation while asperity shape is of lesser importance. The critical area obtained from our numerical results contrasts with published theoretical estimates when background stress is low. Therefore, we derive two new theoretical estimates of the critical size under low background stress while also accounting for overstress. Our numerical results suggest that setting the asperity overstress and area close to their critical values eliminates strong numerical artefacts even when the overstress is large. We also find that properly chosen asperity size or overstress may significantly shorten the duration of the initiation. Overall, our results provide guidelines for determining the size of the asperity and overstress to minimize the effects of the forced initiation on the subsequent spontaneous rupture propagation

    H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations

    Get PDF
    Ambient vibration techniques such as the H/V method may have the potential to significantly contribute to site effect evaluation, particularly in urban areas. Previous studies interpret the so-called Nakamura's technique in relation to the ellipticity ratio of Rayleigh waves, which, for a high enough impedance contrast, exhibits a pronounced peak close to the fundamental S-wave resonance frequency. Within the European SESAME project (Site EffectS assessment using AMbient Excitations) this interpretation has been tested through noise numerical simulation under well-controlled conditions in terms of source type and distribution and propagation structure. We will present simulations for a simple realistic site (one sedimentary layer over bedrock) characterized by a rather high impedance contrast and low quality factor. Careful H/V and array analysis on these noise synthetics allow an in-depth investigation of the link between H/V ratio peaks and the noise wavefield composition for the soil model considered here: (1) when sources are near (4 to 50 times the layer thickness) and surficial, H/V curves exhibit one single peak, while the array analysis shows that the wavefield is dominated by Rayleigh waves; (2) when sources are distant (more than 50 times the layer thickness) and located inside the sedimentary layer, two peaks show up on the H/V curve, while the array analysis indicates both Rayleigh waves and strong S head waves; the first peak is due to both fundamental Rayleigh waves and resonance of head S waves, the second is only due to the resonance of head S waves; (3) when sources are deep (located inside the bedrock), whatever their distance, H/V ratio exhibit peaks at the fundamental and harmonic resonance frequencies, while array analyses indicate only non-dispersive body waves; the H/V is thus simply due to multiple reflections of S waves within the layer. Therefore, considering that experimental H/V ratio (i.e. derived from actual noise measured in the field) exhibit in most cases only one peak, we conclude that H/V ratio is (1) mainly controlled by local surface sources, (2) mainly due to the ellipticity of the fundamental Rayleigh waves. Then the amplitude of H/V peak is not able to give a good estimate of site amplification facto

    Estudio de la estabilidad y dispersión del problema de propagación de ondas sísmicas en 2-D utilizando el método de diferencias finitas generalizadas

    Get PDF
    AbstractThis paper shows the solution to the problem of seismic wave propagation in 2-D using generalized finite difference (GFD) explicit schemes. Regular and irregular meshes can be used with this method.As we are using an explicit method, it is necessary to obtain the stability condition by using the von Neumann analysis. We also obtained the star dispersion formulas for the phase velocities for the P and S waves, as well as the ones for the group velocities.As the control over the irregularity in the mesh is very important in the application of this method, we have defined an index of irregularity for the star (IIS) and another for the cloud (IIC), analyzing its relationship with the dispersion and time step used in the calculations

    Improvement of the impact resistance of natural fiber–reinforced polypropylene composites through hybridization

    Get PDF
    Polypropylene (PP) hybrid composites were prepared by the combination of naturalreinforcements and poly(ethylene terephthalate) (PET) fibers. Wood, flax, and sugarpalm fibers were used to increase stiffness and strength, while PET fibers served toimprove impact resistance. Interfacial adhesion was increased by using a maleated PP(MAPP) coupling agent. The hybrid composites containing 20 wt% of the naturalfibers were homogenized in a twin-screw compounder and then injection moldedinto standard tensile specimens. The amount of PET fibers was changed from 0 to40 wt% in the composites. Tensile and impact testing, acoustic emission measure-ments, and scanning electron microscopy (SEM) were used for the characterizationof the composites as well as to follow deformation and failure processes. The resultsproved that the concept of using PET fibers to improve impact resistance works withall natural fibers. Local deformations, the debonding or pullout of the PET fibers, initi-ate the plastic deformation of the matrix, which consumes considerable energy. Thefracture of PET fibers might also contribute to energy absorption. The type of naturalfiber does not influence the effect; the amount of PET fibers determines fractureresistance. The improvement of interfacial adhesion by coupling increases strengthand slightly improves impact resistance. The overall properties of the hybrid compos-ites prepared are acceptable, sufficiently large stiffness and impact resistance beingachieved for a large number of structural application

    Hybrid Multicore/vectorisation technique applied to the elastic wave equation on a staggered grid

    Get PDF
    In modern physics it has become common to find the solution of a problem by solving numerically a set of PDEs. Whether solving them on a finite difference grid or by a finite element approach, the main calculations are often applied to a stencil structure. In the last decade it has become usual to work with so called big data problems where calculations are very heavy and accelerators and modern architectures are widely used. Although CPU and GPU clusters are often used to solve such problems, parallelisation of any calculation ideally starts from a single processor optimisation. Unfortunately, it is impossible to vectorise a stencil structured loop with high level instructions. In this paper we suggest a new approach to rearranging the data structure which makes it possible to apply high level vectorisation instructions to a stencil loop and which results in significant acceleration. The suggested method allows further acceleration if shared memory APIs are used. We show the effectiveness of the method by applying it to an elastic wave propagation problem on a finite difference grid. We have chosen Intel architecture for the test problem and OpenMP (Open Multi-Processing) since they are extensively used in many applications

    PRENOLIN project. Results of the validation phase at sendai site

    Get PDF
    One of the objectives of the PRENOLIN project is the assessment of uncertainties associated with non-linear simulation of 1D site effects. An international benchmark is underway to test several numerical codes, including various non-linear soil constitutive models, to compute the non-linear seismic site response. The preliminary verification phase (i.e. comparison between numerical codes on simple, idealistic cases) is now followed by the validation phase, which compares predictions of such numerical estimations with actual strong motion data recorded from well-known sites. The benchmark presently involves 21 teams and 21 different non-linear computations. Extensive site characterization was performed at three sites of the Japanese KiK-net and PARI networks. This paper focuses on SENDAI site. The first results indicate that a careful analysis of the data for the lab measurement is required. The linear site response is overestimated while the non-linear effects are underestimated in the first iteration. According to these observations, a first set of recommendations for defining the non-linear soil parameters from lab measurements is proposed. PRENOLIN is part of two larger projects: SINAPS@, funded by the ANR (French National Research Agency) and SIGMA, funded by a consortium of nuclear operators (EDF, CEA, AREVA, ENL)

    Local amplification of deep mining induced vibrations - Part.2: Simulation of the ground motion in a coal basin

    Get PDF
    This work investigates the impact of deep coal mining induced vibrations on surface constructions using numerical tools. An experimental study of the geological site amplification and of its influence on mining induced vibrations has already been published in a previous paper (Part 1: Experimental evidence for site effects in a coal basin). Measurements have shown the existence of an amplification area in the southern part of the basin where drilling data have shown the presence of particularly fractured and soft stratigraphic units. The present study, using the Boundary Element Method (BEM) in the frequency domain, first investigates canonical geological structures in order to get general results for various sites. The amplification level at the surface is given as a function of the shape of the basin and of the velocity contrast with the bedrock. Next, the particular coal basin previously studied experimentally (Driad-Lebeau et al., 2009) is modeled numerically by BEM. The amplification phenomena characterized numerically for the induced vibrations are found to be compatible with the experimental findings: amplification level, frequency range, location. Finally, the whole work was necessary to fully assess the propagation and amplification of mine induced vibrations. The numerical results quantifying amplification can also be used to study other coal basins or various types of alluvial sites
    • 

    corecore