697 research outputs found

    Electrolyte jet machining for surface texturing of Inconel 718

    Get PDF
    Electrolyte jet machining is an emerging non-conventional machining process which is capable of selectively applying multi-scale surface textures. Surfaces processed in this way do not suffer from thermal damage and hence this technique is highly suited to finishing procedures in high value manufacturing across the aerospace and biomedical sectors. Furthermore, input variables can be modified dynamically to create functional graduation across component surfaces. In this study, the development and design of a custom-built EJM system is described, and the capability of the EJM platform to machine and create surface textures in Inconel 718, a widely used nickel based super alloy, is investigated. Through control of machine path programming and parameter variation, multi-scale surface textures are created which have the potential to enhance bonding with subsequent coating layers and also provide fluid dynamic advantage

    Energy distribution modulation by mechanical design for electrochemical jet processing techniques

    Get PDF
    The increasing demand for optimised component surfaces with enhanced chemical and geometric complexity is a key driver in the manufacturing technology required for advanced surface production. Current methodologies cannot create complex surfaces in an efficient and scalable manner in robust engineering materials. Hence, there is a need for advanced manufacturing technologies which overcome this. Current technologies are limited by resolution, geometric flexibility and mode of energy delivery. By addressing the fundamental limitations of electrochemical jetting techniques through modulation of the current density distribution by mechanical design, significant improvements to the electrochemical jet process methods are presented. A simplified 2D stochastic model was developed with the ability to vary current density distribution to assess the effects of nozzle-tip shape changes. The simulation demonstrated that the resultant profile was found to be variable from that of a standard nozzle. These nozzle-tip modifications were then experimentally tested finding a high degree of variance was possible in the machined profile. Improvements such as an increase in side-wall steepness of 162% are achieved over a standard profile, flat bases to the cut profile and a reduction of profile to surface inter-section radius enable the process to be analogous to traditional milling profiles. Since electrode design can be rapidly modified EJP is shown to be a flexible process capable of varied and complex meso-scale profile creation. Innovations presented here in the modulation of resistance in-jet have enabled electrochemical jet processes to become a viable, top-down, single-step method for applying complex surfaces geometries unachievable by other means

    The importance of microstructure in electrochemical jet processing

    Get PDF
    © 2018 Electrochemical jet processing (EJP) is an athermal technique facilitating precision micromachining and surface preparation, without recast layer generation. The role of the microstructure in determining machining characteristics has been largely overlooked. In this study, we show that in order to optimise EJP for a given material, fundamental material factors must be considered to ensure the desired near-surface response in terms of metallurgy, topography and dimensional accuracy. In this work, specimens have been prepared from the same feedstock material (brass, Cu39Zn2Pb), to appraise the role of microstructure in the determination of key removal characteristics, such as resultant topography, removal efficiency and form. Topography is shown to be highly dependent upon microstructure across large current density ranges, whereby the phase ratio is generally the dominant amplitude-defining material property, where preconditions with divergent ratios result in lower amplitudes. The microstructure, specifically the phase ratio, significantly changes the form, where predominantly single-phase conditions result in deeper and narrower features (up to 15% deeper compared with as-received condition). In addition, removal efficiency is greater (by 6%) at low current density for small grained dual-phase conditions, than for predominantly single-phase, due to erosion complementing anodic dissolution. Mechanisms are discussed for these removal phenomena and used to inform industrial practice

    Surface modification of mild steel using a combination of laser and electrochemical processes

    Get PDF
    Traditional methods for achieving hierarchical surface structures include highly specified, deterministic approaches to create features to meet design intention. In this study microstructural alteration was undertaken using laser apparatus and secondary texturing was achieved via succeeding electrochemical processes. Electrochemical jet machining (EJM) was performed on mild steel subjected to laser pre-treatment using power densities of 4167 and 5556 W/cm2 with pulse durations from 0.3 - 1.5 seconds. Results show that in combination, laser pre-treatment and EJM can alter the exposed surface textures and chemistries. Here, machined surface roughness (Sa) was shown to increase from approximately 0.45 µm for untreated surfaces to approximately 18 µm for surfaces subjected to extreme laser pretreatments. After pre-treatments materials were characterised to appraise microstructural changes, shown to be martensite formation, reinforced by complementary simulation data, and significant increases in observable hardness from approximately 261 HV for the asreceived material to over 700 HV after pre-treatment. The greater hardness was retained after EJM. Exposed martensitic lath structures at machined surfaces are shown to be partially responsible for surface roughness increases. The surfaces were explored with energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy demonstrating changes in apparent surface chemistry. This analysis revealed increasing oxide formation at the surface of the pre-treated EJM surface, a further contributory factor to surface roughness increases. This new process chain will be of interest to manufacturers seeking to control surface morphology for applications including micro-injection mould/die manufacture. While demonstrated here for steel similar mechanisms are exploitable in other material systems. A new technique has been demonstrated, resulting from the models and processes presented to couple laser and electrolyte jet processing for complex surface preparation

    Direct-writing by active tooling in electrochemical jet processing

    Get PDF
    Recent innovations in electrochemical jet processing have caused step changes in process flexibility and precision. However, utilisation of these innovations requires the development of new machine tool technology. Presented here is a new methodology enabling the exploitation of highly customisable energy density profiles regardless of toolpath vector whilst minimising any error from the intent profile. A further approach is defined whereby active tooling allows the energy density profile to be modulated as a function of position within the toolpath, giving rise to dynamic feature creation. Adoption of this methodology allows a new design freedom within electrochemical jet processes

    Unveiling surfaces for advanced materials characterisation with large-area electrochemical jet machining

    Get PDF
    Surface preparation for advanced materials inspection methods like electron backscatter diffraction (EBSD) generally involve laborious and destructive material sectioning and sequential polishing steps, as EBSD is sensitive to both sample topography and microstrain within the near-surface. While new methodologies, like focussed ion beam and femtosecond laser milling are capable of removing material in a layer-by-layer manner to enable the construction of tomographic datasets within the electron microscope, such techniques incur high initial capital cost for slow removal and reconstruction rates. In this study, ambient condition electrochemical slot jets are applied to rapidly etch (e.g. 31 s) large surface areas (e.g. 160 mm 2) at controlled depths (e.g. 20 µm) with no in-process monitoring. Unveiled surfaces are conducive to measurement by EBSD (raw index rates between 75-95%), despite topographic anisotropy arising both from the process and the material. The mechanisms of topography formation during dissolution under the slot jet are analysed and understood. It is proposed that this slot jet method can be applied to create measurement surfaces for analysis with optical-based microstructural measurement routines reliant on topography and directional reflectance, at a significantly lower cost and time intervention than electron beam-based analysis methods

    Electrolyte design for suspended particulates in electrolyte jet processing

    Get PDF
    The addition of particles (<1 μm) to electrolyte feedstocks results in marked changes to the morphology of deposits when electrolyte jet processing (EJP) compared to electrolyte only feedstocks. Through the use of a ‘carrier’ electrolyte in additive mode these particulates may become embedded within a deposited matrix. These also serve as nucleation points for crystallisation. This allows opportunities for creating complex surface coatings and incorporating materials independent of crystallisation phenomena. Control of the microscale morphology of these is demonstrated here through the addition of the brightening agent – thiourea and the buffer – sodium sulfate. Here acidity and hence electric surface potential are modified and the response upon deposition evaluated

    Crystallographic texture can be rapidly determined by electrochemical surface analytics

    Get PDF
    Orientation affects application-defining properties of crystalline materials. Hence, information in this regard is highly-prized. We show that electrochemical jet processing (EJP), when coupled with accurate metrological appraisal, can characterise crystallographic texture. Implementation of this technique allows localised dissolution to be anisotropic and dependent on etch-rate selectivity, defined by the crystallography. EJP therefore, generates complex, but characteristic topographies. Through rapid surface processing and analysis, textural information can be elucidated. In this study, samples of polycrystallineAl and Ni have been subjected to EJP, and the resulting surfaces analysed to generate three-colour orientation contrast maps. Comparison of raw data acquired through our method with prior electron back-scatter diffraction data shows broad correlation and assignment (68% on a pixel-by-pixel basis), showcasing rapid large-area analysis at high efficiency

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore