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Abstract 

The increasing demand for optimised component surfaces with enhanced chemical and 

geometric complexity is a key driver in the manufacturing technology required for advanced 

surface production. Current methodologies cannot create complex surfaces in an efficient and 

scalable manner in robust engineering materials. Hence, there is a need for advanced 

manufacturing technologies which overcome this. Current technologies are limited by 

resolution, geometric flexibility and mode of energy delivery. By addressing the fundamental 

limitations of electrochemical jetting techniques through modulation of the current density 

distribution by mechanical design, significant improvements to the electrochemical jet process 

methods are presented. A simplified 2D stochastic model was developed with the ability to 

vary current density distribution to assess the effects of nozzle-tip shape changes. The 

simulation demonstrated that the resultant profile was found to be variable from that of a 

standard nozzle. These nozzle-tip modifications were then experimentally tested finding a high 

degree of variance was possible in the machined profile. Improvements such as an increase 

in side-wall steepness of 162% are achieved over a standard profile, flat bases to the cut 

profile and a reduction of profile to surface inter-section radius enable the process to be 
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analogous to traditional milling profiles. Since electrode design can be rapidly modified EJP is 

shown to be a flexible process capable of varied and complex meso-scale profile creation. 

Innovations presented here in the modulation of resistance in-jet have enabled 

electrochemical jet processes to become a viable, top-down, single-step method for applying 

complex surfaces geometries unachievable by other means.  

Nomenclature   

ds minimum distance of the nozzle tip 
from the surface (μm) 

STD standard nozzle type 

dn specific distance of the individual 
modified nozzle feature from the 
surface (μm) 

CPE centre point element nozzle 
design 

AA annulus area of nozzle tip surface 
facing the incident surface (mm2) 

WC wide castellated nozzle design 

AF area of current focussing feature 
facing the incident surface (mm2) 

NC narrow castellated nozzle 
design 

Aexp area of profile expected from 
calculation (mm2) 

𝐸𝑒𝑓𝑓  electrolyte current efficiency 
(%) 

V voltage (V) ECE electrochemical equivalent 

I current (A) J current density (A/cm2) 

R resistance (Ω) m mass (g) 

pr probability of removal L length (m) 

S Single point or element on the 
substrate facing the nozzle tip 
element (N) 

DIF design impact factor 

N Single point or element on the 
surface of the nozzle tip facing the 
substrate surface (S) 

rnoz radius of the nozzle (mm) 

I.D. inner diameter of the nozzle (mm) O.D. outer diameter of the nozzle 
(mm) 

STE symmetrical twin element nozzle 
design 

tm total machining time 

OSPE Off-centre single point element 
nozzle design 
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1. Introduction 
 

The creation of next-generation, high-integrity surfaces [1-3] presents a significant 

manufacturing challenge. Advantage can be gained for anti-fouling, drag-reduction, enhanced 

adhesion [4, 5] and enhanced osseointegration [6, 7] in applications where complex surface 

structuring has been employed. 

Contrived process chains involving polymer deposition [8, 9], laser ablation [10, 11] and by 

mechanical means [12], have been adopted, but results fall short when practitioners seek to 

process large areas to a level of complexity. Furthermore, when processing metallic surfaces, 

integrity is of paramount importance such that the metallurgy of the near-surface is assured 

and not adversely affected by thermal loading. 
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Electrolyte jet processing (EJP) is the amalgamation of electrochemical jet machining (EJM) 

[13-15] and electrochemical jet deposition (EJD) [16, 17],  within a unified machine tool. This 

technique can achieve jetted deposition of material with a cathodic workpiece, and jetted 

material removal with an anodic workpiece (Figure 1a). Manipulation of process parameters, 

polarity and electrolyte chemistry enables application-specific, bespoke surface-structuring to 

be generated in a single process step. 

 

To date, capability of the EJP process is fundamentally limited as a result of the characteristic 

energy density profile, which results from the use of ‘standard’ nozzles. Through modelling 

and experimentation of adaptations to the process, new capabilities are demonstrated here 

and qualified from first principles. 

1.1. In-jet modulation of current distribution  
 

Consistent with other energy beam processes such as laser [18], electron [19] or water jet [20] 

the energy density is typically seen to be of a Gaussian spatial distribution (Figure 1b). This 

extends radially outward from a peak intensity at the centre of the beam. The resulting profiles 

exhibit tapered sides, a rounded apex and diffused edge definition (Figure 1c). Significant work 

 

Figure 1: (a) EJP end-effector in subtractive polarity configuration (material removal) as used in this 
demonstration. (b) Standard nozzle showing the standard Gaussian type current density profile within the 
incident jet. (c) 3D surface map from experimental results showing the profile currently achieved from a 

standard cylindrical nozzle reflecting the Gaussian profile of energy distribution. demonstrating the tapered 
feature sides, a rounded apex and diffused edge definition. 
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has been undertaken in the field of laser processing to modify energy distributions. Through 

beam profile shaping, more favourable and uniform thermal distributions [21-23] have been 

produced. In this case, holographs generated by custom optics are used to define the incident 

energy distribution. This can be considered as optically analogous to the work presented here.  

Although EJM has been demonstrated to be capable of biomimetic type structures in the form 

of super-hydrophobic surfaces [24], EJP is currently limited by a characteristic energy profile 

(Figure 1b). This is the principle factor in determining the dissolution profile [15]. By adapting 

this energy distribution, it is proposed that distinct meso- and micro-surface geometries can 

be created. 

Typically, a uniform, straight-cut nozzle is addressed normally to the workpiece (Figure 1b). In 

EJP, the peak current density is observed at the centre of the nozzle. Modifications to the 

nozzle tip can adjust the perpendicular distance between the nozzle element and workpiece 

therefore altering jet electrical resistance. It is proposed that the accepted definition of ‘stand-

off’ (inter-electrode gap) is no longer sufficient. Instead, a new parameter is required which 

defines the spacing between nozzle rim contour and the work. This must accommodate 

spatial- and temporal-variation as the work piece shape evolves during machining. The result 

being the creation of preferential current pathways and therefore material removal can be 

modulated across the area of jet impingement. This has yet to be demonstrated and exploited.  
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Found experimentally, Figure 2a shows that when using a standard profile nozzle, resistance 

increases from 15 Ω at a nozzle stand-off of 200 µm through to 200 Ω at 2.75 mm stand-off 

when used with a 2.3 M NaNO3 electrolyte. This can then be related to localised resistance at 

nozzle tip features. Adjacent to this (Figure 2b) is the expected 2D distribution as a percentage 

of the total charge created by proposed new nozzle geometries. Utilising the measured 

resistance data from Figure 2a it is possible to calculate the percentage of total charge 

available (Equation 1). Using the minimum and maximum points of current created by the 

nozzle features, a Gaussian distribution is then assigned around these giving an 

approximation of the current distribution. The area under the curve being equal to the total 

current density. This is, in turn, is proportional to the total material removed across the 2D 

section.  

𝑉 = 𝐼𝑅 = 𝜋𝑟𝑛𝑜𝑧
2𝐽𝑅          [1] 

 

Figure 2: (a) By redesigning the geometry of the nozzle tip, localised resistance can be modulated in-jet thus 
allowing current distribution to be manipulated. For the first time this leads to a change in the profile removed. 

(b) graphical representations of the current distribution expected from the CAD designs in the bottom left 
corner of the graph creating preferential current paths by lowered localised resistance at discreet points. This 

achieves a higher weighting of the total current supplied at highly localised points across the nozzle profile 
expressed as a percentage of the total current supplied. 
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Significant prior work has been carried out in the development and deployment of simulations 

of energy beam processes. A wide range of mathematical models to explain material removal 

and induce optimisation in comparative processes such as abrasive water-jet (ABWJ)  [25-

28], sandblasting [29], pulsed electron beam ablation (PEBA) [30], laser ablation [31, 32] and 

fluid jet polishing [33, 34] have been presented, each with specifics relative to the process in 

question. Previous work, in both removal and deposition electrochemical jet methods, has 

provided insight into the basic current distribution found with a standard cylindrical nozzle [35, 

36] and expanded to three dimensions [37]. Increasing temperature from joule heating and 

changing electrolyte conductivity has been included [38] alongside the influence of varying 

nozzle diameter [39] and dynamic jet shape as a function of an eroding surface [40]. Further 

still a  multiphysics approach has been undertaken and expanded to include fluid-dynamics, 

electro-dynamics and geometry deformation leading to ejection and secondary machining 

effects [41, 42]. These models are all based on the assumption of a static, cylindrical Gaussian 

energy distribution and have produced reliable results [43, 44]. However, adaptations are 

required to underpin this investigation. In order to utilise this new capability, advances must 

be made to the established process models.  

A preliminary study was undertaken here to investigate the hypothesis that localised variations 

of in-jet resistance can be induced and so affect the resultant profile created. A simplistic 2D 

stochastic model is used in the first instance to test the hypothesis and understand the physical 

process mechanics by applying a modulated current density profile beyond that of a typical 

single point Gaussian distribution. Based on the results of the simulation, basic nozzle designs 

were implemented and experimentally tested. The resultant profiles are then compared to the 

simulation results to understand if this approach is valid. A design equation is developed to 

incorporate the two major effects of material transfer in an electrochemical cell; variance of 

distance between electrodes and area of facing electrodes at any single point. This is then 

utilised to understand the effects of nozzle geometry against response profile and 

demonstrating the validity of the equation. 
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The methodology is further applied to smaller scale nozzles to investigate scalability of feature 

size. Using the smaller scale nozzles also enables greater variation in process parameters. 

Therefore, it was possible to carry out an investigation to see if the influence of current density 

and electrolyte jet speed had any effect on the general response profile of a specific nozzle 

design.  

This novel approach to electrolyte jet processing techniques is aimed to expand the application 

of EJP in large area surface structuring and micromachining through enhanced process 

flexibility of an already scalable and economically-viable technique.  

 

1.2. Simulation of in-jet resistance modulation 

Simulation using a variation of two-dimensional nozzle tip designs was undertaken to assess 

whether the addition of modulating in-jet resistance could be achieved. 

In order to understand the modulation of in-jet resistance from various two-dimensional nozzle 

tip designs, a MATLAB model was developed. This simulated the jet interaction environment 

between tool and target surface. Variance can be seen in experimental work, even across the 

length of the sample. This arises due to the natural fluctuations from valence variation, 

hydrodynamic effects, including wash away of large undissolved precipitates, and grain 

boundary effects. The model captures this stochastic nature of EJM through probabilistic 

dissolution.  

In this model, all machine parameters are assumed to remain constant. Joule heating and 

erosion effects due to hydrodynamic effects are not considered. Physical properties of the 

electrolyte are not investigated apart from the electrolyte current efficiency, which is taken to 

be constant. The material is considered to be homogenous taking the electrochemical 

equivalence (ECE) as a weighted average from the constituent elements. 
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The current density distribution for each nozzle is calculated from the resistance generated as 

a function of distance from nozzle tip to contour as described in Section 1.1. Using these 2D 

representations, the current distribution can be applied to the progressing dissolution.  

The electrolysis model was constructed from Faraday's First Law of Electrolysis, which gives 

the expected value for mass removed (in grams) to be: 

𝑚 =  ∫  
𝐼(𝜏)𝑀

𝐹𝑧
 𝑑𝜏                                                                                                                            [2] 

𝑡𝑚 

0

 

where 𝑡𝑚 is the total machining time, 𝐼(𝜏) is the current integrated over time step 𝜏, M is the 

molar mass, F is Faradays constant and z is the material valence. 

The total cross-sectional area expected to be removed is thus: 

𝐴𝑒𝑥𝑝 = ∫  
𝑚(𝑥)

𝜌𝐿
𝐸𝑒𝑓𝑓𝑑𝑥,                                                                                                                   [3] 

 where x is the distance across the cross-sectional area in the x co-ordinate (Figure 4), 𝜌  is 

the material density of a single 2D section within the profile (m2), and 𝐸𝑒𝑓𝑓 is the electrolyte 

current efficiency (%) calculated from prior experimental work on material removal rates [45] 

and compared to theoretical mass removal m. 

The model removes elements of the substrate stochastically with respect to a probability of 

removal (𝑝𝑅) which is governed by supplied current density, electrolyte, electrochemical 

equivalent (ECE) of the material elements and condition of neighbouring elements (Equation 

4). The basis of the simulation is shown in Figure 3.  

𝑝𝑅 =
𝐸𝐶𝐸∙𝐼(𝑥)𝑑𝑡

𝜌𝐿
  𝐴𝑒𝑥𝑝⁄                     [4] 
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Figure 3: A flow chart of the stochastic simulation process as described in the text. If a surface element is 
exposed and the probability of removal is greater than a random number, r∈[0,1], then the element will be 

dissolved.  

 

For each time step, each exposed element of the surface will have a respective probability of 

removal compared to a random number, 𝑟 ∈ [0,1]. If 𝑝𝑅< r, the element is not dissolved. This 

process continues until the total machining time (tm) has been applied (with 𝑝𝑅 scaled 

accordingly), or alternatively, until the total area removed across the 3D surface approximates 

the area expected, Aexp. The model provides a predicted surface profile for any nozzle 

geometry, nozzle distance, and current density combination. 

Using these simulated striation profiles, the process can be reiterated stacking the profiles to 

create a three-dimensional simulation of the expected profile along a striation length (L) 

(Figure 4). The stochastic nature of the simulation can be seen by the variation in the repeated 

profiles. 
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Figure 4: Normalised 3D simulations of the expected striation profile created by stacking re-iterated sim 

profiles along a striation length (L), considering the dissolution effect caused by the current distribution at each 

discreet point across the kerf (x) for (a) standard nozzle, (b) centre point element (CPE), (c) off-centre single 

point element (OSPE) and (d) symmetrical twin element (STE) 

 

1.3. Nozzle design definition  
 

Novel nozzles were created to establish non-standard energy distributions mimicking those 

used in the initial simulation. Two separate approaches were taken to the design of the nozzle 

tips. Firstly, a planar approach to design was taken to establish the influence of changing the 

distance between the nozzle rim contour and the interaction surface. Secondly, a free-form 

approach was taken to assess the influence of the area of each nozzle contour feature facing 

the interaction surface.  

These complex nozzle tip geometries require a new metric other than the simple nozzle stand-

off distance to understand the impact of the nozzle design on the resultant profile created. 
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This is termed the nozzle design impact factor (DIF). This takes into consideration not only the 

distance of the parallel surface of the nozzle to the workpiece surface but also the area of the 

nozzle surface. This is expressed in Equation 5. 

 

𝑫𝑰𝑭 =
𝑨𝑭

𝑨𝑨
.

𝒅𝑺

 𝒅𝑵
                                    [5] 

Where AF is the area of the specific feature facing the surface and AA is the annulus area of 

the nozzle tip, dS is the minimum distance of the nozzle tip from the surface and dN being the 

distance of the individual nozzle feature from the surface (Figure 5).  

 

Higher DIF values will therefore lead to higher localised material removal due to lower 

localised resistance. This in turn means a lower voltage is required to generate the determined 

current density within the jet. Using the DIF value allows the performance of nozzle features 

to be evaluated and their weighted effect on the resultant profile to be predicted.  

 

 

Figure 5: Schematic of modified nozzle tip showing the definition of terms for the DIF 
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The relationship seen in Equation 5, although useful in assessing design elements of a simple 

nozzle design feature, is required to be expanded to address more complex designs (Equation 

6).  It is possible to assess the impact of the nozzle as a whole or any individual feature by 

quantifying the area under the contour of the nozzle. Effectively the larger the area, the larger 

the resistance and so the lower the impact (Figure 6).  

𝑫𝑰𝑭𝑛𝑜𝑧𝑧𝑙𝑒(𝑥) = ∫ ∫
𝑑𝑆

𝑑𝑁𝑆(𝑥,𝑧,𝜃)
 𝑑𝑧 𝑑𝜃

𝑧

0

𝜋

−𝜋
  ,                  [6] 

where 𝑑𝑁𝑆 is the Euclidean distance between a nozzle element (N) and substrate surface 

element (S), located at ( 𝑥𝑁, 𝑦𝑁, 𝑧𝑁)  and (𝑥𝑆 , 𝑦𝑆 , 𝑧𝑆), 

𝑑𝑁𝑆(𝑥, 𝑧, 𝜃) =  √∆𝑥2 + ∆𝑦2 + ∆𝑧2  

  = √(𝑥𝑆 − 𝑥𝑁)2 + 𝑑𝑁
2 + (𝑧𝑆 − 𝑧𝑁)2 ,    [7] 

as the height of the surface is taken as ys = 0. 

 

Figure 6: Graphical representation of the extended DIF equation for evaluation of a single element of the NC 

nozzle 

The contour of the nozzle is removed from the design intent and unravelled into a two-

dimensional profile, the abscissa being the circumference of the nozzle and the ordinate being 

the distance from the interaction surface. The total area under the curve between -p and p 

giving the impact of the nozzle as previously described. The impact of any design feature can 

also be evaluated, seen as x in Figure 6 and compared to any other feature in the design.  
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1.4. Definition of metrics for validation 

To assess the response profiles produced by the modified nozzles several metrics to help 

define the geometrical shape can be used. The resultant machined profiles of each nozzle 

type were imaged using a focus variation microscope (Alicona G5 infinite focus, x20 

magnification) to create geometrical surface maps. Profiles of the resultant machined features 

were extracted from these surface maps using DigitalSurf MountainsMap software. 

Geometrical analysis of the profile data was carried out to obtain depth, width, area, overcut 

and side wall slope (taper) of each of the resultant profiles. Standard deviation (SD) is 

consistent across all results as the deviation from the mean taken over 30 individual samples. 

Total overcut is defined in this investigation as the remaining area of the removed profile on 

both sides of the resultant feature. This is achieved by removing the ideal profile, being the 

area removed directly below the nozzle, for the full depth of the feature. In the case of Figure 

5a this is 1 mm axially to the nozzle.  

Overcut is undesirable in the EJP process and several alternative hybrid systems including 

laser assistance [46, 47], and electrochemical slurry jet micro-machining [48], have been 

proposed to reduce this. Minimising overcut is also seen as advantages within the process as 

not only does this demonstrate an increase in fidelity of the response profile to that expected, 

but also makes the process more easily implemented from design for manufacture 

 

Figure 7: (a) Definition of feature side wall slope / taper in this case for a resultant profile from an STE nozzle 
(b) Definition of over-cut used in this study again with a STE resultant profile. 
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perspective. Slope (Figure 5b) is defined in this case as the gradient of the side wall in rise 

over run format. Side wall taper was extracted from the bulk of the edge ignoring both the 

radius at the top and bottom of the wall. The mean of the two side-wall slopes is used for the 

slope angle of that profile. This is analogous to the taper defined in machining process and 

allows assessment between the profiles that are created and traditional tooling, greater slope 

giving a more uniform squarer cross section and a lower slope value giving a more triangulated 

profile. 

 

 

 

 

 

 

 

 

 

 

 

 

2. Experimental validation of energy modulation, and scalability 
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Experimentation was carried out using a previously developed CNC EJP platform (Figure 8) 

built by the investigators, details of which can be found elsewhere [45]. Inconel 718 was the 

workpiece used in all experiments. It was chosen as the target demonstrator material for this 

process as it is applied in several high value sectors and it reliably demonstrates high and low 

current density effects on the resultant surface finish. 

All samples were pre-polished to ≈ 1 µm surface roughness (𝑅𝑎) before machining. Samples 

were cleaned post-process in an ultrasonic bath and swabbed with acetone before inspection.   

Machining samples were created by carrying out striations across the workpiece surface with 

the nozzle orientation set by fixture to create the desired profile as denoted in the simulation. 

Repeated passes were carried out in separate striations passing over the same toolpath 

consecutively, increasing passes by one per striation (up to four).  

During experimentation, the electrolyte jet velocity for the 1 mm I.D. nozzle was set at 13 m/s 

for the initial experimental validation and 16 m/s in all other cases. For the 0.5 mm I.D. nozzle 

16 m/s was used except for the form variation due to jet speed is experiments where jet speed 

was varied from 3 m/s to 25 m/s. For the 0.25 mm I.D. nozzle 16 m/s was used in all cases. 

The electrolyte used throughout was a 2.3 M solution of NaNO3. Analytical grade reagents 

 

Figure 8: Schematic of EJP process 
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and deionised water were used. Electrolytes were maintained at 21°C during all experiments. 

Nozzle tip stand-off from the workpiece, in all cases, was initially set at 0.25 mm. A constant 

applied current was set at 900 mA (J =100 A/cm2) for 1 mm nozzle, 210 mA (J = 100 A/cm2) 

for the 0.5 mm nozzle, except during parameter variation where it ranged from 80 A/cm2 to 

200 A/cm2 and 100 mA (J = 200 A/cm2) for the 0.25 mm nozzle. Voltage was left to float as 

this was seen to vary dependant on the nozzle geometry and subsequent resistance. Each 

pass was carried out at 0.5 mm/s translation speed for all work except for Figures 17, 18 and 

20 (for 1 striation) where the translation speed was reduced to 0.1 mm/s. 

Standardised stainless steel, cylindrical, straight walled nozzles were used as the control and 

the base for the modified nozzle tip geometries. The patterns were generated in CAD and 

toolpaths generated in CAM. Using wire electrical discharge machining (WEDM), the modified 

geometry was cut into the standard nozzle tips (Figures 9, 10 and 11). 

The initial planar design nozzle contours were designed to be counter-intuitive to the known 

current density distribution found with a cylindrical nozzle (Figure 1b). Using 1 mm I.D. 

nozzles, these were tested to demonstrate the resultant profile could be modified by simply 

moving the focal point of the current density distribution. These rudimentary designs are 

 

Figure 9: Tinted SEM images showing the standard and modified nozzles using a simple planar approach 
prepared by wire EDM. (a) Standard nozzle, (b) centre point element (CPE), (c) symmetrical twin element 

(STE) and (d) off-centre single point element (OSPE). All scale bars are 500 μm 
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referred to as (Figure 9b) centre point element (CPE), (Figure 9c) symmetrical twin element 

(STE) and (Figure 9d) off-centre single point element (OSPE). 

Free form nozzles (Figure 10) were designed and tested again using 1 mm I.D. nozzles. This 

was carried out with consideration to the area of the elements of the nozzle tip contour and 

their position. The resultant profiles were analysed to assess the influence the changing area 

of each nozzle tip element, the nozzle as a whole and the resistance characteristics of the 

nozzle. These are referred to as the wide castellated nozzle (WC) (Figure 10a) and the narrow 

castellated nozzle (NC) (Figure 10b). 

The nozzles in Figure 11 were machined to experimentally assess the fidelity achievable 

between nozzle shape and resultant profile with respect to the DIF of the individual nozzle 

features and the scalability of the process. Figure 11a shows not only individual steps 

machined into the section to give three different resistance points but also the side wall of the 

nozzle is thinned therefore reducing the circumference and area at a localised section. Figure 

11b copies the STE design from previous design except scaled and cut into a 500 μm I.D. 

nozzle and Figure 11c uses a scaled version of the OSPE design on a 250 μm I.D. nozzle. 

Using these smaller nozzles will show experimentally if the energy modulation translates to a 

 

Figure 10: Freeform nozzles designs focussing on the area of each individual nozzle element (a) Wide 
castellated nozzle design (WC) (b) Narrow Castellated nozzle design (NC). All scale bars are 500 μm 
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smaller scale when reducing distances between nozzle features and the hydrodynamic effects 

found in a more constrained nozzle.  

 

3. Results and Discussion 

3.1. Validation of nozzle design and simulation 
 

Considering the electrolyte jet as a simplified resistor, the total current delivered is similar in 

all nozzle types, but the distribution is modified as a result of the nozzle geometry. This is 

demonstrated by the area of material removed in the resultant profiles, seen in Figure 12a and 

12b being within a 3.5% deviation of the mean resultant profile area of 39000 µm2 the variation 

coming from the varying DIF of each nozzle.  

The OSPE nozzle exhibits the deepest cut at 50 µm (SD <1%) compared to the standard 

nozzle generating only a 35 µm (SD <1%) deep cut. The STE design shows a cut depth just 

over half that of the OSPE nozzle at 28 µm (SD <1%) at the tip location of each feature. Along 

with the obvious form changes in the resultant profile (Figure 12b), there are also more subtle 

 

Figure 11: Nozzle designs realised to evaluate the effectiveness of the DIF and scalability of the process (a) 
steps with a 1mm I.D. nozzle, (b) STE design with a 0.5mm I.D. nozzle and (c) OSPE design with a 0.25mm 

I.D. nozzle 
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changes. The overcut area of the STE nozzle beyond the ideal column below the nozzle is 

increased from 9300 µm2 (SD 7%) in the standard resultant profile to 10100 µm2 (SD 7%) for 

the STE resultant profile. However, the side walls demonstrate an increase of 19% in slope, 

(83.6 µm/mm (SD <1%) as compared to 70.4 µm/mm (SD 4%) of the standard profile) due to 

the floor of the profile being wider as the current focuses under the twin elements at the edge 

of the jet. In comparison, the CPE resultant profile displays a side wall slope of 53.8 µm/mm 

(SD 3%) as the current profile is concentrated to the centre of the jet.  

From Figure 12a discrete surface point simulation results (shown in red) exhibit good 

agreement in the cases of the standard, CPE and OSPE resultant profiles (shown in black) 

achieved after a single pass. The two-dimensional profile simulations were generated using 

the probability of dissolution of each element under the jet. This considers the applied current 

at that point (Figure 2b), the electrolyte current efficiency, known material constants and jet 

interaction availability for each element at the surface. For the standard nozzle profile, the 

simulation shows an area removal of 39200 µm2. This can be compared to the actual response 

profile of 39100 µm2 (SD <1%) removed by the standard nozzle showing a variance of 0.2% 

 

Figure 12: (a) Example resultant machined profiles from a single pass (black line) and compared to the simulation 
derived profiles (red point cloud) (b) Tinted SEM images of the sectioned resultant varied profile channels with 4 

passes over the striation showing full geometrical evolution. All scale bars are 500 µm. 
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simulation to actual. However, the standard response profile is marked by an increased 

removal observed at the bottom corners of the cut. This is likely due to hydrodynamic effects 

and a modified ejection path as dissolution advances. This ejection profile phenomena has 

been previously noted to occur during machining [42] utilising a cylindrical nozzle. For the 

CPE, STE and OSPE nozzles it demonstrates a mean variation of 4.8 % from simulation to 

actual. In the case of the CPE, electrolyte ejection from the cut is facilitated by the nozzle 

geometry and the cut profile, contrasting effects seen in the other nozzles. This permits a more 

accurate simulation. Jet ejection at the nozzle is not observed to change significantly but 

interaction and ejection from the machined feature does. Jet-rebounding effects causing re-

machining [42] have been reported, however, given the edge effect upon  the fluid flow regime, 

this phenomenon is proposed not to contribute significantly here. 

The CPE nozzle shows a maintained focus of the current density profile to the centre of the 

feature is due to the spacing of the nozzle rim contour to workpiece. Thus, a high resistance 

at the periphery of the jet is maintained regardless of the evolving surface profile (Figure 13b) 

 

Figure 13: Extracted surface and profile from areal scans showing comparison of evolving response profile 
over four passes of (a) standard nozzle and (b) CPE nozzle demonstrating little change to the profile shape 

regardless of repeating striations due to the nozzle design type. Scale bars for nozzles 500 μm 
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The STE nozzle response profile differs whereby the simulation shows a variation in form with 

a higher peak in the centre of the cut. The actual cross-sectional area removed being 36700 

µm2 (SD <1%) giving an 8 % variation from the theoretical value. This variation can be 

emulated to a degree by simulation of the electrical field effect occurring during machining and 

highlights the evolution of the cut profile. However, in this case the nozzle design is detrimental 

to the fidelity of the response profile to nozzle geometry. In Figure 14a, surface scans of 

striations cut with an STE nozzle over 4 passes demonstrate how the geometry develops for 

a typical surface feature. The depth increases from 28.6 µm (SD <1%) in a single pass to 112 

µm (SD <1%) after four passes. While the depth increases the bottom of the profile flattens 

and taper decreases with a slope of 83.6 µm / mm (SD <1%) after 1 pass to 274 µm / mm (SD 

2.4%) after 4 passes.  

 

 

Figure 14: Utilising an STE nozzle (a) consecutive passes were made over the same striation equal to a 16 

second dwell time after four passes. (b) Electrical field strength map shown for the jet zone when approaching 

a flat surface. (c) EFSM for interaction zone when approaching a pre-machined surface and the influence this 

has upon field distribution. Note that arbitrary units are applied for electric field strength. (d) Schematic of an 

STE nozzle showing the distance (ds) of the main element tip to the work surface becoming greater towards 



23 
 

the centre of the jet. (e) showing the distance of the main element tips to a variable surface having become 

equal across the entire jet (f) With increasing passes the shorter path length is now to the central feature so 

shifts machining focus 

Considering Figure 14b, the electrical field effect is simulated for the initial pass against the 

flat surface by applying Equation 9 for electrical field strength. 

Electrical field strength 𝐸(𝑟) =
1

4𝜋𝜀0𝜀𝑟
∫ 𝑑𝑟′𝜌𝑄(𝑟′)

𝑟−𝑟′

|𝑟−𝑟′|3
    [9] 

Where 𝜀0𝜀𝑟 is the electrolyte permittivity, 𝜌𝑄 is charge density r is the position of the point at 

which the electric field is calculated and r' is the location of the charge. 

High strength areas can be clearly seen below the nozzle tips (primary machining zone) where 

regions of least resistance i.e. where the path from rim contour to workpiece is the shortest 

giving the largest removal rates. While areas having a lower field strength surround these and 

give rise to a secondary lower-rate machining zone. With machining time, the form of the 

surface being machined changes. The effect of this can be seen in Figure 14c where the 

electrical field simulation is now acting on a non-parallel surface. This is consistent with 

machining of a pre-existing feature. Here the field strength is shown to be larger in the primary 

machining zone extending into the central area. As such a shift occurs in the rate of machining 

of the central feature. Unlike conventional ECM, the form of the response profile does not 

come directly from the nozzle rather from the interaction the nozzle has with the electrolyte 

jet. As nozzle tip stand-off is constant throughout from the initial setting, so the subsequent 

profiles produced may differ as a function of jet dwell or repeat striations. The reasoning 

behind this changing profile can be seen in Figure 14 d,e,f. As the jet impinges on a flat 

surface, the distance between the nozzle tip and the workpiece surface is at its shortest so 

achieving the most direct path. As the distance becomes greater towards the centre of the jet 

so electrical influence is decreased resulting in attenuated removal creating the initial profile. 

By comparison (Figure 14e) where machining of a feature created by a previous pass the 

distance between the nozzle tips and the interaction surface is now equal across the jet so 
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maintaining the profile. It can be postulated that at this point hydrodynamic effects now start 

to affect the profile. Due to the rising centre feature, the stagnation point at the centre of the 

jet is now exacerbated. The impinging jet is forced either side of the central feature into the 

base of the valley where effectively a longer interaction is seen at the surface. Therefore, 

removal at the valley floor is increased and subtle deepening of the valleys occurs taking the 

distance to the nozzle tips out of equilibrium at discreet points. On a successive pass (Figure 

14f), the distance to the interaction surface directly under the nozzle tips is now longer than 

that to the central feature giving a more favourable point for initial current attachment. 

Therefore, preferential machining takes place with a further shift in the primary machining zone 

to remove the central feature leaving a flat base to the profile. This result has been reported 

elsewhere [47], albeit due to polarisation effects masking areas of the profile which do not 

occur in this material. This aims to not only demonstrate the flexibility achievable with these 

modified nozzles but also that EJP can be self-limiting with appropriate nozzle and fluid 

dynamic considerations. 

Freeform modification of nozzles in multiple planes were then undertaken. Wide castellation 

(WC) and narrow castellation (NC) nozzles are shown in Figure 15. The machined profiles 

were compared to the resultant STE profile in Figure 15a over a single pass. Marked changes 

to the profile can be seen from the profile scans, the WC profile showing a wider profile with a 

more pronounced double apex than the STE profile (exhibiting a side wall slope of 62.3 µm / 

mm (SD 2%) compared to 83.6 µm / mm (SD <1%)). The NC nozzle demonstrates superior 

geometric enhancement with a height increase of the central feature of 168% (SD 22%, the 

high deviation likely due to varying hydrodynamic effects) over the STE created profile and a 

reduction of 65% in the side wall taper with a slope of 187 µm / mm (SD 4.4%).  

Figure 15b shows the comparison of in-jet resistance to the standard nozzle. As expected the 

majority of nozzle designs had an increase in resistance when compared to the standard 

nozzle (increasing from 25 Ω for the standard up to 45 Ω for the OSPE). The exception to this 

is the NC nozzle which shows a reduction of jet electrical resistance to 23 Ω. 
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This is apparent when considering the resultant profiles from the NC and WC nozzles. The 

area of the four element tips in the NC nozzle being 125000 µm2 when compared to the WC 

design having an element tip area of 64000 µm2. This gives a DIF for the NC nozzle elements 

of 0.13 compared to the WC nozzle which has a DIF of 0.06. When considering the complete 

tip contour of all facing surfaces at the varying distances from the surface the DIF for the WC 

nozzle is 0.14 compared to the DIF of the NC nozzle being 0.42. 

When considering figure 16 showing the profile of the NC nozzle over increasing passes the 

geometry can be seen to again evolve in a similar fashion to that of the STE nozzle (Figure 

16 a) and in contrast to that of the standard or CPE nozzle resultant profiles (Figure 13). This 

type of internal geometry can be considered as not being consistent across the range of 

surface energy delivered and so are prone to a high degree of variation dependant on process 

parameters and therefore consideration of this must be taken into account when developing 

 

Figure 15: More complex 3D designs can be used to enhance the resultant geometry but making changes to 

the area of elements at specific distances from the work-piece influencing the geometry of the resultant profile. 

(a) Shows the profiles created by nozzles with varying area the castellated and narrow castellated when 

compared to the STE nozzle on which they are based but with further material removed (b) demonstrating the 

differing resistance created by the nozzles the castellated and narrow castellated demonstrates the ability of the 

nozzle design to affect the machining process and careful consideration of area and distance enables a lower 

than standard resistance increasing process efficiency. 
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the desired geometry. In the case of the NC nozzle the central feature is still noticeable after 

four passes due to its greater prominence in the initial passes from the very defined current 

density profile.  

Figure 17 demonstrates the capability of these nozzles to achieve patterns with complex 

profiles and interactions which are simplistically and efficiently created with a one step process 

in a difficult material to competitively machine by other means over large areas. The array of 

features demonstrated also exhibits the flexibility of this process. STE and OSPE nozzles were 

used in combination. OSPE nozzles were first used at 0.1 mm/s feed, cutting the block in the 

Y direction over a single pass (Figure 17 e,f). Using the STE nozzle cuts were then made in 

the X direction to intersect the first two cuts (17 f,g) being single passes at 0.1 mm/s, the third 

cut being four passes over the same direction with constant parameters resulting in a much 

deeper cut (≈ 600 μm).It can be observed, the loss of the distinctive ‘W’ shape with multiple 

passes generating a flatter valley bottom as noted previously (Figure 17b) and the ramping in 

of the features created in the NC program to avoid key-holing and unstable processing 

conditions. The shallower features created in the x direction are formed by a bouncing type 

tool path with alternating start points at 0.5 mm/s (Figure 17 b,c,d). Additionally, the positional 

 

Figure 16: Surface and profile extracted from an areal scan of the NC nozzle with increasing number of 
passes. Scale bar for nozzle is 500 μm 
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repeatability demonstrated in previous work [49] is apparent alongside the ramping in and out 

of the features. Also, shallower features are observed where the substrate has changed 

thickness and the stand-off distance has become drastically reduced.  

 

Figure 17: Inconel 718 machined by a selection of nozzles. (a) 3D surface generated from areal scan. 
(b,c,d,e,f,g) Tinted SEM images extracts of the machined piece demonstrating the range of surfaces that these 

nozzle designs can create. All scale bars are 500 µm 

 

Through parameter variation not only can meso-scale surface structures be created but the 

microscale finish can be altered across the features [45]. By lowering jet velocity, low current 

density areas can be controllably created at the periphery of the features as the jet is no longer 

as tightly masked. This is shown in Figure 17. A rougher finish is achieved here than at the 



28 
 

centre of the features where energy density is higher [50]. In contrast, Figure 18, alternative 

finishes are achieved by the use of a higher jet speed, current density and slower traverse 

speed leading to greater edge definition, greater variation in surface texture and deeper cuts 

due to the changing dissolution mechanisms. 

 

Figure 18: SEM images of machine features with an STE nozzle with a modified parameter set to produce 
different micro-texturing finishes (a) straight cut striation with increased current density and increased jet 
velocity (b) pocket intersecting a straight cut striation with increased jet velocity but lower traverse speed 

giving a rougher surface finish.  All scale bars are 500 µm 

3.2. Process fidelity and scalability 

Figure 19 shows resultant profiles extracted from the striations of the steps nozzle (Figure 

19a), 500 μm STE 9 (Figure 19b) and 250 μm OSPE (Figure 19c), after a single pass. The 

resultant profile of the stepped nozzle (Figures 19c, 20) shows there is a limit to the fidelity 

which can be achieved in comparison to the nozzle shape. The influence of the steps can be 

observed as distinctly different rates of dissolution occurring under the various features. The 

influence of the jet exiting the cavity has, to a degree, merged these areas. With the extending 

distance to the surface of the steps the DIF reduces from 0.3 for the nearest step to the surface 

through 0.07 of the second step to 0.05 for the third step. Even though the third step has by 

far the largest area the influence of steps two and three is minimal. This can be seen in Figure 

20 where the increasing number of steps makes this area of dissolution more prominent with 

every pass. The extreme version of this being the deepest cut where the influence of the 
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highest step has been minimised. The area of the first step would need to be greatly reduced 

for greater distinction between the steps in the resultant profile. 

When compared to the OSPE nozzle design from section 3.1 which has a simple design with 

graduation of decreasing DIF across the nozzle, so reflected in a linear graduation of the 

response profile away from the longest nozzle edge. Alternatively, when this is compared to 

the response profile of the steps nozzle this gives a curved effect away from the deepest part 

of the profile due to the sudden and stepped changes in the DIF 

It is worthy of note the reduced kerf, being under the expected minimum of twice the nozzle 

I.D. [39, 45] (1.64 mm SD 3.5% ) which is found with the similar designed 1 mm I.D. OSPE 

nozzle (2 mm SD <1%). Also, the sharper intersection with the un-machined surface to the 

right of the profile. When comparing the distance from the deepest part of the valley to the 

dissolution interface with the unchanged surface, the steps nozzle measures a mean of 292 

μm (SD 6%), compared to the OSPE nozzle measuring 507 μm (SD 3%) resulting in a 152% 

increase in side-wall steepness (219 μm / mm SD 6% to 551 μm / mm SD 6%). This is due to 

the thinning of the outside wall at this point on the nozzle giving a sudden increase in 

 

Figure 19: Comparison of extracted machined resultant profiles compared to the simulated 
profile from the DIF equation (a) 0.25 mm I.D. OSPE nozzle. (b) 0.5 mm STE nozzle and (c) 1 

mm Steps nozzle. All scale bars 500 μm 
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resistance aiding ejection by limiting rebound effects [42] therefore limiting the spread of 

dissolution. The 500 μm STE nozzle (Figure 19b) shows the characteristic “W” shape usually 

associated with this design of nozzle. Even though the horizontal distance between the nozzle 

tips is reduced the twin valleys of the resultant profile remain, albeit at a much closer proximity, 

giving a sharper apex to the central feature.  

Similarly, for the 250 μm OSPE nozzle (Figure 19a) the resultant profile also remains 

consistent with that that observed with the 1 mm I.D. OSPE nozzle demonstrating accurate 

scalability traits across both 500 μm I.D. and 250 μm nozzles with the designs tested 

throughout the range of the sizes. 

As the 500 μm STE nozzle was shown to maintain the expected profile further tests were 

carried out across multiple samples. Due to the reduced diameter of the nozzle a higher 

degree of variation could be obtained within the apparatus for current density and electrolyte 

jet speed (Figure 21) therefore the impact of parameter variation on the profile geometry could 

be assessed. 

 

Figure 20:Example images samples features machined using the steps nozzles generated from areal surface 

scans showing single pass (shallowest cut) through 2, 3 and 4 passes with the final deepest groove being 

created with four passes at 0.1 mm/s traverse speed. Scale bar for nozzle is 500 μm 
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Figure 21: Variation of machining parameters with a 0.5 mm I.D. nozzle (a) variation of current density (b) 
variation of Jet speed 

Figure 21a shows the multiple striations machined in single passes with increasing current 

density. As expected, in line with prior work, as current density increases so the material 

removal and therefore depth increases. However, the ‘W’ shape is maintained throughout only 

increasing in definition due to the localised peaks in current density increasing and overcoming 

any polarisation effects. This is contrast to the repeating passes due to the jet being impinged 

on an un-machined surface so the focal point of the current density profile is unchanged. 

Figure 21b shows the effect of increasing electrolyte jet speed. It is worthy of note that it is 

only possible to create mask-less defined machining at the low speeds where the thin film 

area around the jet impingement area would not normally occur, due to the high pressure and 

design of the coaxial air shroud. Only at 3 m/s and 8 m/s is there a noticeable difference in 

volume removal due polarisation effects such as removal of oxide films formed which inhibits 

the current density peaks and effectively evens out the current density curve. Machined at 100 

A/cm2 the expectant profile is generated in all cases with little variation in the side walls slope. 

However, there is noticeable variation to the profile shape of the central feature between the 

jet speeds and supports earlier findings where the central feature shows high dimension 

deviation due to variable hydrodynamic effects directly under the jet. 
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4. Conclusions 

It was hypothesised that in-jet resistance could be locally altered by modifications to the nozzle 

tip geometry in order to develop the process capability of EJP. It has been clearly 

demonstrated that the manipulation of physical properties of the jet zone can change the 

response profile allowing significant advances over the state-of-the-art. 

Through geometric modification of the nozzle apertures, altering the localised distance 

between nozzle and the opposite interaction surface at discrete points, the resistance was 

altered across the jet. 

This was demonstrated firstly, using simplistic 2D simulations using known dissolution 

predictions of a dissolving surface incorporating the modulation of current density. This 

demonstrated that the resultant profile was found to be variable from that of a standard nozzle 

through a variety of simple tip designs.  

Secondly, through experimental application of the nozzle designs, the simulation results were 

verified and when evaluated a 4.8% mean variation was found from simulation to actual. It 

was suggested that hydrodynamic ejection effects dominate causation for this. 

The design impact factor (DIF) was introduced to enable the assessment of the design of 

nozzle tip elements, both in the area of the tip contour facing the incident surface and its 

distance. Freeform nozzle tip designs were specifically used to prove the validity of the DIF 

equation allowing modulation of the energy density field within the jet to allow response profile 

flexibility.  

Dimensional accuracy improvements were found over the standard nozzle such as reductions 

in side wall taper from 67.4 µm / mm found with a standard nozzle to 172 µm / mm found with 

a NC nozzle and 141 µm / mm found with an STE nozzle and also achieving a reduced kerf 

and flat cut base more analogous with traditional cutting profiles.  
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Jet speed and dwell time were found to have a large influence on the fidelity of the resultant 

profile especially when considering profiles with internal geometries. Further investigation of 

this influence and that of other process parameters is required to progress this work. 

Variation in in-jet resistance has been unequivocally demonstrated and the mechanism 

elucidated. The results of this being the high degree of variation possible in the resulting 

machined profile. Coupling the results found here in this initial investigation with more 

mathematically-complex, multiphysics approach combining fluid mechanics of established 

processing models will allow a greater degree of process control and form prediction. Thus, 

allowing electrochemical jetting techniques to realise process maturity and be considered 

flexible, precise and sufficiently economic to be considered viable for the creation of high 

throughput biomimetic type surface structures. It can also be considered as a viable alternative 

to conventional shear-based processes in appropriate circumstances. Advances made here 

will facilitate cross-disciplinary collaboration with biologists, tribologists and advanced 

application component designers to realise next-generation, surface-critical components. 
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