383 research outputs found

    Characterizing extinction debt following habitat fragmentation using neutral theory

    Get PDF
    Habitat loss leads to species extinctions, both immediately and over the long-term as “extinction debt” is repaid. The same quantity of habitat can be lost in different spatial patterns with varying habitat fragmentation. How this translates to species loss remains an open problem requiring an understanding of the interplay between community dynamics and habitat structure across temporal and spatial scales. Here we develop formulas that characterize extinction debt in a spatial neutral model after habitat loss and fragmentation. Central to our formulas are two new metrics, which depend on properties of the taxa and landscape: “effective area”, measuring the remaining number of individuals; and “effective connectivity”, measuring individuals’ ability to disperse through fragmented habitat. This formalizes the conventional wisdom that habitat area and habitat connectivity are the two critical requirements for long term preservation of biodiversity. Our approach suggests that mechanistic fragmentation metrics help resolve debates about fragmentation and species loss

    Coupling virtual watersheds with ecosystem services assessment: A 21st century platform to support river research and management

    Get PDF
    The demand for freshwater is projected to increase worldwide over the coming decades, resulting in severe water stress and threats to riverine biodiversity, ecosystem functioning and services. A major societal challenge is to determine where environmental changes will have the greatest impacts on riverine ecosystem services and where resilience can be incorporated into adaptive resource planning. Both water managers and scientists need new integrative tools to guide them towards the best solutions that meet the demands of a growing human population but also ensure riverine biodiversity and ecosystem integrity. Resource planners and scientists could better address a growing set of riverine management and risk mitigation issues by (1) using a “Virtual Watersheds” approach based on improved digital river networks and better connections to terrestrial systems; (2) integrating Virtual Watersheds with ecosystem services technology (ARtificial Intelligence for Ecosystem Services: ARIES), and (3) incorporating the role of riverine biotic interactions in shaping ecological responses. This integrative platform can support both interdisciplinary scientific analyses of pressing societal issues and effective dissemination of findings across river research and management communities. It should also provide new integrative tools to identify the best solutions and trade-offs to ensure the conservation of riverine biodiversity and ecosystem services

    Advances in aquatic insect systematics and biodiversity in the Neotropics: introduction

    Get PDF
    The Neotropical Region or Neotropics, contains vast expanses of rain forest and river systems representing some of the most biologically diverse ecosystems on Earth, but much of its resident biota remains undescribed and undocumented, and some of it is at risk of extirpation and extinction. Anthropogenic disturbances, especially deforestation, urbanization, and climate change, threaten the integrity of the Neotropics and its biodiversity. In the Neotropics, freshwater habitats are particularly susceptible to environmental stressors and freshwater species throughout the Neotropics have experienced marked declines greater than those of other groups when compared to marine and terrestrial systems. Advances in taxonomic descriptions, preparation of keys, and faunal assessments will aid future studies as well as conservation efforts

    The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES): progress and next steps

    Full text link
    Biodiversity and the services ecosystems provide have built the foundation of human civilization and provide for the welfare of people. With the increase of the human population it has become clearer than ever that the human exploitation of our natural resources leads to detrimental interactions between ecological and sociological systems. Only concerted and global actions will be able to reverse ongoing biodiversity loss. In response to these needs, the United Nations agreed the establishment of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) in 2010. Here, we report on the progress IPBES has made since its inception, and suggest how the scientific community can engage with this important science-policy interfac

    A Methodology for the Vulnerability Analysis of the Climate Change in the Oromia Region, Ethiopia

    Get PDF
    Goal of the vulnerability research of the last years is to evaluate which community, region, or nation is more vulnerable in terms of its sensitive to damaging effects of extreme meteorological events like floods or droughts. Ethiopia is a country where it is possible to find the described conditions. Aim of this work was to develop an integrated system of early warning and response, whereas neither landmark data nor vulnerability drought analysis existed in the country. Specifically, a vulnerability index and a capacity to react index of the population of three Woredas in the Oromia Region of Ethiopia were determined and analysed. Input data concerned rainfall, water availability, physical land characteristics, agricultural and livestock dimensions, as well as population and socio-economic indices. Data were collected during a specific NGO project and thanks to a field research funded by the University of Torino. Results were analysed and specific maps were drawn. The mapping of the vulnerability indices revealed that the more isolated Woreda with less communication roads and with less water sources presented the worst data almost on all its territory. Despite not bad vulnerability indices in the other two Woredas, however, population here still encountered difficulty to adapt to sudden climatic changes, as revealed by the other index of capacity to reaction. Beyond the interpretation of each parameter, a more complete reading key was possible using the SPI (Standardized Precipitation Index) beside these indicators. In a normalized scale between 0 and 1, in this study the calculated annual SPI index was 0.83: the area is therefore considerably exposed to the drought risk, caused by an high intensity and frequency of rainfall lack

    Distribution, structure and function of Nordic eelgrass (<em>Zostera marina</em>) ecosystems:implications for coastal management and conservation

    Get PDF
    This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them

    Changing governance, changing inequalities: Protected area co-management and access to forest ecosystem services: a Madagascar case study

    Get PDF
    Access, in reference to Ecosystem services (ES), is defined as the capacity to gain benefits from the environment. There has been a global shift in natural resource governance, particularly increased co-management of protected areas (PAs). Yet there has been little research on how this change may be affecting access to ES. We aim to fill this research gap by considering: (a) what ES are considered most important, (b) what factors are important in determining whether a person can access ES, and (c) how rules and regulations regarding ES access are decided and enforced. Qualitative and quantitative data were collected using questionnaires, focus groups and interviews with stakeholders in a case study PA in Madagascar, co-managed by local community associations (VOIs) and an NGO. Data analysis was framed around the IPBES framework and access factors. Respondents considered provisioning services most important, but also valued cultural and regulating services. Institutions and social identity had the largest impact on access to ES. VOI members and individuals who knew VOI committee members had greater access to ES than non-members. Findings show that co-management may be shifting ES access inequalities rather than reducing them, and we outline a number of challenges relating to PA co-management

    The functional role of temperate forest understorey vegetation in a changing world

    Get PDF
    Temperate forests cover 16% of the global forest area. Within these forests, the understorey is an important biodiversity reservoir that can influence ecosystem processes and functions in multiple ways. However, we still lack a thorough understanding of the relative importance of the understorey for temperate forest functioning. As a result, understoreys are often ignored during assessments of forest functioning and changes thereof under global change. We here compiled studies that quantify the relative importance of the understorey for temperate forest functioning, focussing on litter production, nutrient cycling, evapotranspiration, tree regeneration, pollination and pathogen dynamics. We describe the mechanisms driving understorey functioning and develop a conceptual framework synthesizing possible effects of multiple global change drivers on understorey-mediated forest ecosystem functioning. Our review illustrates that the understorey's contribution to temperate forest functioning is significant but varies depending on the ecosystem function and the environmental context, and more importantly, the characteristics of the overstorey. To predict changes in understorey functioning and its relative importance for temperate forest functioning under global change, we argue that a simultaneous investigation of both overstorey and understorey functional responses to global change will be crucial. Our review shows that such studies are still very scarce, only available for a limited set of ecosystem functions and limited to quantification, providing little data to forecast functional responses to global change

    Managing neotropical oil palm expansion to retain phylogenetic diversity

    Get PDF
    Summary: The expansion of tropical agriculture is a major driver of the extinction crisis. A key question is whether biodiversity losses can be minimized by restricting future expansion to low-productivity farmland and retaining forest fragments, especially in rapidly changing Neotropical landscapes. We investigated these methods in the context of avian phylogenetic diversity, which summarizes the evolutionary history preserved within communities. Evidence suggests that phylogenetic diversity plays an important role in maintaining key ecosystem functions. We collected data on avian communities in the Colombian Llanos, a region highlighted as being optimal for the expansion of oil palm, at the expense of existing habitats including forest remnants and improved cattle pastures. PD, a measure of phylogenetic richness, and MPD, a measure of the phylogenetic distance between individuals in a community in deep evolutionary time, were significantly higher in forest than in oil palm or pasture, but did not differ significantly between oil palm and pasture. MNTD, a measure of distance between individuals in a community at the intra-familial and intra-generic level, was significantly higher in oil palm and pasture than in forest. However, median evolutionary distinctiveness (ED) was highest in pasture, partly due to the abundance of distinct waterbirds, but did not differ between oil palm and forest. PD in oil palm and pasture increased with the extent of remnant forest cover. Synthesis and applications. The PD (a measure of phylogenetic richness) and MPD (a measure of the phylogenetic distance) of bird communities in this region can best be conserved by ensuring that new oil palm plantations replace pasturelands rather than forest. A secondary benefit of preserving forest would be the enhancement of PD in the surrounding agricultural landscape. This strategy will need to be coupled with measures to either reduce pasture demand or to intensify existing cattle production to ensure that forest is not replaced by pasture elsewhere

    Use of demand for and spatial flow of ecosystem services to identify priority areas

    Get PDF
    Policies and research increasingly focus on the protection of ecosystem services (ESs) through priority-area conservation. Priority areas for ESs should be identified based on ES capacity and ES demand and account for the connections between areas of ES capacity and demand (flow) resulting in areas of unique demand-supply connections (flow zones). We tested ways to account for ES demand and flow zones to identify priority areas in the European Union. We mapped the capacity and demand of a global (carbon sequestration), a regional (flood regulation), and 3 local ESs (air quality, pollination, and urban leisure). We used Zonation software to identify priority areas for ESs based on 6 tests: with and without accounting for ES demand and 4 tests that accounted for the effect of ES flow zone. There was only 37.1% overlap between the 25% of priority areas that encompassed the most ESs with and without accounting for ES demand. The level of ESs maintained in the priority areas increased from 23.2% to 57.9% after accounting for ES demand, especially for ESs with a small flow zone. Accounting for flow zone had a small effect on the location of priority areas and level of ESs maintained but resulted in fewer flow zones without ES maintained relative to ignoring flow zones. Accounting for demand and flow zones enhanced representation and distribution of ESs with local to regional flow zones without large trade-offs relative to the global ES. We found that ignoring ES demand led to the identification of priority areas in remote regions where benefits from ES capacity to society were small. Incorporating ESs in conservation planning should therefore always account for ES demand to identify an effective priority network for ESs.Peer reviewe
    • 

    corecore