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Abstract 1	

Habitat	loss	leads	to	species	extinctions,	both	immediately	and	over	the	long-term	as	“extinction	2	

debt”	is	repaid.	The	same	quantity	of	habitat	can	be	lost	in	different	spatial	patterns	with	varying	3	

habitat	fragmentation.	How	this	translates	to	species	loss	remains	an	open	problem	requiring	an	4	

understanding	of	the	interplay	between	community	dynamics	and	habitat	structure	across	5	

temporal	and	spatial	scales.	Here	we	develop	formulas	that	characterize	extinction	debt	in	a	6	

spatial	neutral	model	after	habitat	loss	and	fragmentation.	Central	to	our	formulas	are	two	new	7	

metrics,	which	depend	on	properties	of	the	taxa	and	landscape:	“effective	area”,	measuring	the	8	

remaining	number	of	individuals;	and	“effective	connectivity”,	measuring	individuals’	ability	to	9	

disperse	through	fragmented	habitat.	This	formalizes	the	conventional	wisdom	that	habitat	area	10	

and	habitat	connectivity	are	the	two	critical	requirements	for	long-term	preservation	of	11	

biodiversity.	Our	approach	suggests	that	mechanistic	fragmentation	metrics	help	resolve	debates	12	

about	fragmentation	and	species	loss.	 	13	
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Introduction 14	

Habitat	loss	drives	extinction	(Millenium	Ecosystem	Assessment	2005;	Rybicki	&	Hanski	2013).	If	15	

all	remaining	individuals	of	a	species	immediately	perish	during	habitat	loss,	then	that	species	16	

becomes	extinct.	Surviving	species	may	still	be	driven	to	extinction	after	the	habitat	loss	via	17	

ongoing	processes.	These	delayed	extinctions	constitute	an	“extinction	debt”	resulting	from	past	18	

landscape	changes	(Tilman	et	al.	1994).	Forecasting	extinction	debt	is	challenging	and	requires	19	

understanding	how	many	species	exist	immediately	after	habitat	loss	and	how	many	will	persist	20	

at	equilibrium	in	the	long-term	(Hanski	&	Ovaskainen	2002;	Hanski	2011).		21	

Habitat	loss	is	often	accompanied	by	habitat	fragmentation:	the	process	of	dividing	a	large	22	

contiguous	region	of	habitat	into	smaller,	spatially	disjunct	remnants.	In	a	fragmented	landscape,	23	

edge	effects,	patch	size	and	isolation	between	patches—in	addition	to	habitat	area—all	influence	24	

species	richness	(Didham	&	Lawton	1999;	Wilson	et	al.	2016)	and	thus	have	a	bearing	on	25	

extinction	debt.	Furthermore,	different	taxa	can	exhibit	different	responses	to	habitat	loss,	even	26	

within	the	same	area	(Carrara	et	al.	2015).	These	differences	are	dependent	on	both	local	and	27	

regional	habitat	configuration	(Tischendorf	&	Fahrig	2000).	28	

While	it	is	uncontroversial	that	species	richness	decreases	with	loss	of	total	habitat	area,	the	29	

relationship	between	species	richness	and	habitat	fragmentation	for	a	specific	level	of	habitat	30	

area	(habitat	fragmentation	per	se)	remains	the	subject	of	fervent	debate.	Some	authors	claim	31	

the	relationship	is	generally	positive	(Fahrig	2017,	2019;	Fahrig	et	al.	2019;	May	et	al.	2019);	32	

others	claim	it	is	negative	(Wilson	et	al.	2016;	Thompson	et	al.	2017;	Fletcher	et	al.	2018).	Part	of	33	

the	problem	is	that	observational	studies	informing	the	debate	are	relatively	few,	and	34	
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experimental	studies	are	even	fewer	(see	Fahrig	2017	for	a	review).	Even	modelling	studies	on	35	

fragmentation	and	biodiversity	are	restricted	in	scale,	because	the	spatially	explicit	models	36	

needed	are	computational	expensive.	37	

One	way	to	avoid	the	computational	cost	of	simulation	modelling	is	to	develop	formulas	that	38	

relate	species	richness	to	fragmentation.	Standard	formulas	for	estimating	species	loss	from	39	

habitat	loss	ignore	fragmentation	entirely.	A	typical	method	is	to	take	a	species–area	relationship	40	

(SAR)	formula,	such	as	the	power	law,	and	estimate	species	loss	as	the	difference	between	the	41	

estimated	species	richness	of	the	original	area	and	that	of	the	smaller	area	remaining	after	42	

habitat	loss	(Brown	1984;	Durrett	&	Levin	1996;	Thomas	et	al.	2004;	Foster	et	al.	2013).	In	43	

addition	to	their	failure	to	account	for	fragmentation,	another	limitation	of	standard	SAR	44	

methods	is	that	they	ignore	the	temporal	component	of	species	loss,	i.e.,	they	are	insensitive	to	45	

the	differences	between	species	richness	in	the	short-term	compared	with	the	long-term	46	

following	habitat	loss.	Attempts	to	salvage	the	power-law	SAR	by	parameterizing	it	for	different	47	

temporal	scales	(Rosenzweig	1995;	Rosenzweig	&	Ziv	1999)	or	different	degrees	of	fragmentation	48	

(Hanski	et	al.	2013;	Haddad	et	al.	2015)	still	do	not	avoid	the	basic	limitation	that	the	power-law	49	

is	a	phenomenological	model.	Such	models	cannot	yield	ecological	insights	or	accurate	50	

predictions	outside	the	range	of	the	data	used	for	parameterization.	This	is	particularly	51	

problematic	when	applied	to	extinction	debt	as	there	is	a	paucity	of	long-term	data.	New	52	

mechanistic	formulas	relating	the	effects	of	fragmentation	to	species	loss	and	extinction	debt	are	53	

sorely	needed.		54	

	55	
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One	fundamental	issue,	which	we	believe	has	confounded	both	the	fragmentation–diversity	56	

debate	and	efforts	to	develop	species–area–fragmentation	formulas,	is	the	lack	of	clarity	about	57	

how	to	measure	fragmentation	(Ewers	&	Didham	2007;	Lindenmayer	&	Fischer	2007).	A	host	of	58	

metrics	exist	for	characterizing	features	of	spatially	intricate	habitat	structure	(Wang	et	al.	2014;	59	

Turner	&	Gardner	2015).	No	single	metric	has	prevailed	as	a	way	to	define	or	quantify	60	

fragmentation	and	it	is	not	clear	which	existing	metrics	are	most	relevant.	An	alternative	61	

approach	is	to	avoid	fragmentation	metrics	by	simulating	a	mechanistic	community	model	on	a	62	

spatially	explicit	replica	of	the	fragmented	landscape	(Hanski	et	al.	2013;	Rybicki	&	Hanski	2013).	63	

However,	the	simulation	approach	is	computationally	expensive	and	only	narrowly	applicable	to	64	

the	simulated	scenario.	This	again	points	to	the	need	for	formulas,	but	more	specifically,	for	65	

formulas	that	quantify	fragmentation	–	through	an	appropriate	fragmentation	metric	–	in	a	way	66	

that	is	relevant	to	biodiversity.	67	

What	kinds	of	models	may	be	suitable	for	deriving	species–area–fragmentation	formulas?	Ideally,	68	

the	models	should	be	mechanistic	and	parsimonious,	to	facilitate	generality	and	tractability.	One	69	

such	class	of	models	is	individual-based	neutral	models	(Hubbell	2001),	which	assume	that	an	70	

individual’s	species	identity	does	not	influence	its	chances	of	survival	or	reproduction.	Despite	71	

their	assumptions,	neutral	models	can	reproduce	numerous	patterns	of	biodiversity	(Volkov	et	al.	72	

2003,	2007;	Alonso	et	al.	2006)	and	non-spatial	versions	have	been	applied	to	predict	species	loss	73	

(Gilbert	et	al.	2006;	Hubbell	et	al.	2008;	Halley	&	Iwasa	2011;	Halley	et	al.	2014).	More	germane	74	

to	the	inherently	spatial	problem	of	extinction	debt	are	spatially	explicit	neutral	models	(Chave	&	75	

Leigh	2002;	Chave	&	Norden	2007;	Rosindell	&	Cornell	2007,	2009),	which	are	less	76	

comprehensively	studied.	While	most	studies	of	spatially	explicit	neutral	models	assume	100%	77	
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habitat	cover,	a	few	have	considered	more	general	landscapes	with	habitat	configurations	that	78	

could	represent	real	habitat-loss	scenarios	(Pereira	et	al.	2012;	Campos	et	al.	2013).	Analytical	79	

formulas	for	species	richness	in	spatially	explicit	neutral	models	have	recently	been	derived	for	80	

the	special	case	where	habitat	is	contiguous	and	has	not	been	destroyed	or	fragmented	(O’Dwyer	81	

&	Cornell	2018).	These	formulas	have	been	extended	to	predict	immediate	species	loss	following	82	

special	kinds	of	fragmented	habitat	loss	(Chisholm	et	al.	2018),	but	the	problem	of	long-term	83	

species	losses	and	extinction	debt	in	such	models	has	yet	to	be	tackled.		84	

Here	we	help	bring	clarity	to	the	fragmentation–diversity	debate	by	developing	what	are,	to	our	85	

knowledge,	the	first	analytical	solutions	for	quantifying	long-term	species	loss	and	extinction	debt	86	

under	fragmentation	scenarios	in	a	mechanistic	model.	We	use	the	spatially	explicit	neutral	87	

model,	but	highlight	how	our	approach	can	be	generalized	to	environments	with	multiple	niches.	88	

Our	formulas	predict	extinction	debt	based	on	the	change	in	a	habitat’s	“effective	area”,	which	89	

captures	the	number	of	individuals	supported	in	the	remaining	habitat,	and	“effective	90	

connectivity”,	which	captures	ease	of	movement	through	the	landscape	from	the	perspective	of	91	

the	taxa	being	studied	and	their	dispersal	ability.	These	two	novel	metrics	give	a	rigorous	92	

analytical	grounding	to	the	long-held	view	of	conservation	biologists	that	habitat	area	and	habitat	93	

connectivity	are	what	drive	long-term	biodiversity	preservation.	94	

Methods 95	

Our	methods	comprised	three	steps.	First,	we	derived	new	analytical	formulas	for	estimating	96	

long-term	species	loss	in	fragmented	landscapes	under	a	mechanistic	neutral	model.	Second,	we	97	

verified	our	formulas	by	comparing	their	predictions	to	individual-based	neutral	simulations	on	98	
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fragmented	landscapes	including	real	landscapes	from	satellite	data	and	synthetic	landscapes	99	

generated	algorithmically.	Third,	we	used	the	formulas	to	get	new	conceptual	insights	about	the	100	

general	relationship	of	extinction	debt	to	landscape	and	taxa.	101	

Spatially explicit neutral models 102	

Our	model	generates	spatially	explicit	neutral	communities	in	a	manner	broadly	similar	to	the	103	

simulations	used	in	Rosindell	&	Cornell	(2007).	Every	time	step,	an	individual	is	killed	and	the	104	

replacement	is	chosen	from	the	propagules	landing	at	the	newly	vacated	cell.	Each	individual	105	

rains	propagules	onto	the	surrounding	landscape	in	a	radially	symmetric	pattern	according	to	a	106	

dispersal	kernel.	With	some	small	probability	𝜈,	the	individual	mutates	into	a	new	species	107	

(speciation).	Eventually,	a	dynamic	equilibrium	between	speciation,	immigration	and	extinction	is	108	

reached	at	the	landscape	scale.	Predictions	from	these	models	are	robust	to	changes	in	the	109	

dispersal	kernel	(Rosindell	&	Cornell	2007,	2009)	and	coincide	with	those	of	the	non-spatial	model	110	

at	large	scales	(Rosindell	&	Cornell	2013).		Coalescence	methods	enable	efficient	simulations	on	a	111	

subset	of	individuals	within	effectively	infinite	landscapes	(Rosindell	et	al.	2008).	They	work	by	112	

progressing	backwards	in	time,	tracking	only	the	ancestors	to	present-day	individuals	of	interest.	113	

We	tracked	the	species	richness	within	a	single	tile	(a	“focal	region”)	of	an	infinite	landscape	114	

constructed	by	tiling	a	given	landscape	structure.	Simulations	were	implemented	in	C++	and	115	

Python	using	the	pycoalescence	package	(available	on	bitbucket:	116	

https://bitbucket.org/thompsonsed/pycoalescence). 117	

	118	
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Analytical approach 119	

We	sought	to	derive	analytical	formulas	for	long-term	species	loss	following	habitat	loss	in	a	120	

spatially	explicit	neutral	model.	In	contrast	to	Chisholm	et	al.	(2018),	who	studied	a	similar	system	121	

and	focused	on	species	loss	immediately	following	habitat	clearing,	we	focused	on	the	long-term	122	

outcome.	We	used	a	method	common	in	physics	whereby	a	complex	system	can	be	re-written	in	123	

terms	of	a	reduced	number	of	parameters.	The	approach	involves	determining	combinations	of	124	

parameters	that	are	codependent,	meaning	the	full	solution	for	the	system	can	ultimately	be	125	

reduced	to	simpler,	analytically	tractable	cases	(as	in	Rosindell	&	Cornell	2007;	Chisholm	et	al.	126	

2018).	Such	approaches	are	typically	developed	by	examination	of	simulation	results,	heuristic	127	

arguments	and	inspired	guesswork;	they	are	later	verified	by	extensive	simulation.		128	

In	the	standard	spatially	explicit	neutral	model	using	gaussian	dispersal	and	point	mutation,	129	

species	richness	in	a	defined	region	of	a	contiguous,	infinite	landscape	reaches	a	dynamic	130	

equilibrium	between	speciation,	immigration,	and	extinction	and	can	be	described	by	a	two-131	

parameter	function	known	as	the	“Preston	function”	Ψ	(Chisholm	et	al.	2018;	O’Dwyer	&	Cornell	132	

2018;	Appendix	1).	Following	a	tradition	of	naming	special	functions	in	mathematics,	the	Preston	133	

function	was	named	(Chisholm	et	al.	2018)	to	highlight	its	importance	and	to	abstract	away	the	134	

complicated	analytical	solution	(O’Dwyer	&	Cornell	2018).	Specifically,	the	species	richness	of	a	135	

disc-shaped	focal	area,	set	within	an	infinite	contiguous	neutral	landscape,	can	be	approximated	136	

as	137	

𝑆!"#$%& 𝐴! , 𝜈,𝜎! ∼ 𝜎!Ψ
𝐴!
𝜎! , 𝜈 	

(1)	138	
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where	𝜈	is	the	point	speciation	rate,	𝜎!	is	a	measure	of	dispersal	ability	(the	variance	of	a	139	

bivariate	normal	dispersal	kernel)	and	𝐴!	is	the	number	of	individual	organisms	in	the	focal	area	140	

(O’Dwyer	&	Cornell	2018).	Chisholm	et	al.	(2018)	extended	this	result	to	produce	equations	giving	141	

upper	and	lower	bounds	on	species	loss	immediately	after	habitat	loss.	We	calculated	extinction	142	

debt	in	the	same	model	by	deriving	the	long-term	species	richness	following	habitat	loss	and	143	

taking	the	difference	between	this	and	the	species	richness	immediately	after	habitat	loss.	To	144	

distinguish	our	results	from	previously	derived	formulas	for	𝑆	the	species	richness	immediately	145	

following	habitat	loss,	we	developed	a	hat	notation	𝑆	to	indicate	long-term	species	richness	at	146	

equilibrium	following	habitat	loss.	Whilst	both	𝑆	and	S	are	expressed	in	terms	of	Preston	147	

functions,	their	mathematical	forms	and	biological	meanings	are	very	different.	Estimating	𝑆	is	a	148	

relatively	simple	spatial	sampling	problem;	estimating	long-term	species	richness	S	involves	149	

community	dynamics	on	the	fragmented	landscape.	150	

	151	

Landscape generation 152	

In	order	to	verify	our	analytical	results,	we	performed	simulations	on	a	wide	variety	of	“synthetic”	153	

and	“real”	landscapes.	Two	parameters	defined	the	landscapes:	ℎ,	the	percentage	of	habitat	154	

cover	after	loss;	and	𝐴!"#,	the	maximum	possible	“effective	area”	in	the	landscape	with	100%	155	

habitat	cover,	where	we	define	effective	area	as	the	number	of	individual	organisms	present	in	a	156	

focal	landscape.	The	effective	area	after	habitat	loss	is	given	by	𝐴! = ℎ ∙ 𝐴!"#.	We	used	𝐴!"#	157	

values	of	50!, 500!	and	5000!,	and	ℎ	values	of	10, 20	or 40%	yielding	nine	values	of	𝐴!.	All	158	
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habitat	pixels	within	our	landscapes	had	equal	value	to	organisms,	and	all	non-habitat	pixels	had	159	

zero	value.	160	

Our	synthetic	landscapes	comprised	two	types:	“random”	(Fig.	1a)	and	“clustered”	(Fig.	1b).	161	

Random	landscapes	were	produced	from	a	landscape	with	100%	habitat	by	randomly	removing	162	

pixels	until	the	desired	habitat	cover	was	achieved.	Ten	random	landscapes	were	generated	for	163	

each	value	of	landscape	size	𝐴!"#	and	percent	cover	ℎ,	giving	a	total	of	90	maps.	Clustered	164	

landscapes	consisted	of	evenly	spaced	disc-shaped	clusters	of	habitat	and	had	one	additional	165	

parameter:	the	number	of	fragments	𝑛.	Clustered	landscapes	were	produced	for	𝑛 = 2! 	where	166	

𝑖 ranges	from	0	(a	single	large	fragment)	to	log! 𝐴!	(every	individual	an	isolated	patch).	167	

Our	real	landscapes	(Fig.	1c)	came	from	satellite	maps	of	South	American	forest	cover	(Hansen	et	168	

al.	2013).	Our	models	on	these	maps	are	not	intended	to	represent	Amazon	tree	community	169	

dynamics	specifically;	the	maps	provide	a	selection	of	realistic	landscape	patterns	for	testing	our	170	

formulas.	For	each	value	of	ℎ,	regions	with	habitat	cover	within	1%	of	ℎ	were	identified	and	pixels	171	

added	to	or	removed	from	habitat	boundaries	to	produce	maps	that	had	exactly	the	desired	172	

habitat	cover	(but	still	closely	resembled	real	landscapes).	For	𝐴!"# = 5000!	there	were	173	

insufficient	regions	with	habitat	areas	within	1%	of	the	target	parameter	values	so	instead	one	174	

hundred	randomly	chosen	real	maps	each	of	size	𝐴!"# = 500!	were	tiled	to	create	these	175	

landscapes.	176	

Empirical example 177	

To	provide	examples	of	how	our	methods	can	be	applied,	we	also	estimated	actual	extinction	178	

debt	for	tropical	trees	in	five	specific	regions	of	the	Amazon.	The	forest	cover	satellite	maps	from	179	
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Hansen	et	al.	(2013)	provided	the	spatial	arrangement	of	trees	within	each	region.	The	five	sites	180	

experienced	significant	deforestation	in	the	last	twenty	years	and	were	chosen	with	relatively	181	

similar	patterns	of	fragmentation	across	a	large	area	surrounding	the	focal	landscape.	The	model	182	

parameters	were	taken	from	the	tropical	forest	literature	(Condit	et	al.	2012):	a	density	of	0.0512	183	

individual	adult	trees	per	m!,	a	dispersal	parameter	of	𝜎 = 8.5	(approximately	40.2	m)	and	a	184	

speciation	rate	of	𝜈 = 6×10!!.	185	

Results 186	

Analytical solutions for long-term species richness in simple 187	

landscapes 188	

Finding	a	general	analytical	solution	from	our	neutral	models	for	long-term	(equilibrium)	species	189	

richness,	𝑆,	of	the	focal	region	within	an	infinite	landscape	𝑳	requires	understanding	which	190	

features	of	𝑳	are	most	important	for	ecological	processes.	In	the	special	case	of	a	contiguous	191	

landscape	𝑳!"#$%&	with	100%	habitat	cover,	no	habitat	has	been	lost	and	𝐴! = 𝐴!"#.	The	long-192	

term	equilibrium	species	richness	is	therefore	equal	to	the	original	species	richness:	193	

𝑆 𝐋!"#$%&, 𝜈,𝜎! = 𝑆!"#$%& 𝐴!"#, 𝜈,𝜎! =  𝑆!"#$%& 𝐴!"#, 𝜈,𝜎! ∼ 𝜎!Ψ
𝐴!"#
𝜎! , 𝜈 	

(2)	194	

Randomly	fragmented	landscapes	represent	another	special	case:	here	habitat	cells	are	uniformly	195	

distributed	in	space,	just	like	the	contiguous	case,	only	now	they	are	randomly	mixed	with	non-196	

habitat	cells	that	cannot	be	occupied.	The	average	distance	between	adjacent	habitat	cells	is	197	
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!!"#
!!

	cell	widths	instead	of	one	cell	width	in	the	contiguous	case.	A	heuristic	solution	to	long-198	

term	species	richness	can	be	obtained	as	follows:	if	we	imagine	compressing	the	spaces	between	199	

habitat	cells	by	 !!
!!"#

	and	reducing	the	dispersal	distance	𝜎	by	the	same	factor,	the	community	200	

dynamics	of	the	system	would	be	unchanged,	but	now	the	habitat	cells	would	be	contiguous	in	201	

space.	For	the	randomly	fragmented	landscape	𝑳!"#$%&,	the	equilibrium	long-term	diversity	202	

𝑆!"#$%&	can	thus	be	calculated	in	terms	of	Preston	functions	by	substituting !!
!!"!

𝜎	for	𝜎	in	Eq.	203	

(2):	204	

𝑆 𝐋!"#$%&, 𝜈,𝜎! = 𝑆!"#$%& 𝐴!"#,𝐴! , 𝜈,𝜎! = 𝑆!"#$%& 𝐴! , 𝜈,
!!

!!"#
𝜎! ∼  !!

!!"#
𝜎!Ψ !!"#

!!
, 𝜈 		205	

(3)	206	

We	verified	this	result	numerically	(Appendix	3);	the	mean	percentage	error	(MPE)	was	less	than	207	

4%	and	can	be	attributed	to	the	error	inherent	to	the	current	methods	for	evaluating	the	Preston	208	

function	itself	(O’Dwyer	&	Cornell	2018).		209	

Analytical solutions for complex landscapes: incorporating 210	

effective connectivity 211	

We	have	thus	far	considered	the	idealized	contiguous	and	random	habitat	patterns,	but	most	212	

landscapes	exhibit	some	intermediate	fragmented	spatial	structure	(Fig.	1)	that	is	described	by	213	

neither	of	the	extreme	cases	corresponding	to	Eqs.	(2)	and	(3)	(Appendix	3).	There	is	no	single	214	

metric	that	entirely	captures	fragmentation,	or	even	an	agreement	among	ecologists	on	the	strict	215	
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definition	of	fragmentation.	Our	strategy	here	is	to	side-step	this	definitional	issue	and	instead	216	

introduce	metrics	of	the	landscape	that	are	mechanistically	important	for	species	diversity.		217	

We	conjectured	that	a	fruitful	approach	for	developing	fragmentation	metrics	relevant	to	218	

biodiversity	would	be	to	consider	fragmentation	from	the	perspective	of	a	dispersing	organism.	219	

Due	to	the	shape	of	a	fragmented	habitat,	the	effective	dispersal—the	actual	movement	across	a	220	

fragmented	landscape—may	differ	considerably	from	the	intrinsic	dispersal—the	expected	221	

movement	of	the	same	taxa	on	a	contiguous	landscape.	We	developed	an	“effective	dispersal”	222	

metric	𝜎!,	which	is	calculated	algorithmically	by	sequentially	applying	𝑛	dispersal	events	and	223	

recording	the	total	distance	between	the	overall	start	and	end	points.	By	repeating	the	process	224	

starting	from	different	habitat	cells,	we	generated	the	mean	distance	𝜇!	travelled	over	𝑛	225	

generations	for	the	landscape.	Relating	this	distance	back	to	a	per-generation	equivalent	gives	226	

our	effective	dispersal	parameter	𝜎!! ≈ 𝜇!!  ∙ !
!"
	(Appendix	2).	For	𝑛 > 1	this	metric	adds	weight	to	227	

the	connectivity	in	critical	regions	through	which	many	lineages	pass	over	longer	time	scales.	In	228	

our	calculations	we	used	𝑛 = 1/𝜈,	the	expected	species’	lifetime.	This	means	that	the	landscape	229	

structure	surrounding	the	focal	area	has	influence	growing	weaker	with	distance,	but	decaying	to	230	

zero	only	on	passing	the	range	boundary	of	an	average	species	present	in	the	focal	region.	In	231	

most	cases	the	estimate	of	𝜎! 	converged	for	much	lower	values	of	𝑛 ≈ 1000.	232	

We	then	defined	another	novel	metric	that	we	call	“effective	connectivity”	𝑐!,	which	combines	233	

the	proportional	habitat	coverage	with	effective	dispersal.	This	makes	our	metric	a	function	of	234	

both	habitat	configuration	and	properties	of	the	taxa	of	interest,	distinguishing	itself	from	other	235	

landscape	metrics	that	statically	capture	habitat	configuration	only.	We	define	effective	236	

connectivity	for	a	single	cell	in	terms	of	its	squared	value,	which	is	the	squared	mean	distance	237	
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travelled	per	generation	for	lineages	starting	from	that	cell,	if	the	cell	is	habitat,	or	zero,	if	the	cell	238	

is	not	habitat	(i.e.,	it	contains	no	individuals).	Averaging	over	all	cells	gives	the	effective	239	

connectivity	of	the	whole	landscape:	240	

𝑐!! = ℎ ∙ 𝜎!!	

(4)	241	

where	ℎ	is	the	proportion	of	habitat	cover	(ℎ = !!
!!"#

	)	and	𝜎!	is	the	effective	dispersal,	as	defined	242	

above.	243	

We	found	that	the	calculation	for	effective	connectivity	can	be	performed	with	reasonable	244	

accuracy	in	equivalent	computational	time	to	other	landscape	metrics	such	as	average	patch	size	245	

and	edge-to-area	ratio	(see	Hesselbarth	et	al.	2019).	We	used	heuristic	arguments	involving	the	246	

effective	connectivity	metric	to	develop	the	following	ansatz	for	equilibrium	species	richness	in	a	247	

neutral	model	on	a	fragmented	landscape:	248	

𝑆 𝐋, 𝜈,𝜎! = 𝑆!"#$%& 𝐴! , 𝜈, 𝑐!! ∼ 𝑐!!Ψ
𝐴!
𝑐!!
, 𝜈 	

(5)	249	

The	motivation	for	this	formula	comes	from	the	intuition	that	a	generic	landscape	gives	the	same	250	

long-term	result	as	a	contiguous	landscape	with	augmented	dispersal	to	account	for	the	change	in	251	

connectivity.	As	expected,	Eq.	(5)	reduces	to	Eq.	(2)	in	the	special	case	that	the	landscape	is	252	

contiguous	and	to	Eq.	(3)	in	the	special	case	that	the	landscape	is	randomly	fragmented.	253	
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Verifying analytical results 254	

We	confirmed	by	simulation	that	our	new	general	solution	for	long-term	species	richness	(Eq.	(5))	255	

accurately	matches	simulated	species	richness	values	(Appendix	3	Fig.	S3).	The	analytical	values	256	

have	under	10%	MPE	across	landscape	types	(8.1%,	9.1%	and	4.2%	for	real,	clustered	and	random	257	

landscapes,	respectively)	when	compared	against	simulated	values.	The	power	of	our	approach	258	

can	be	seen	by	rearranging	Eq.	(5)	to	give	259	

1
𝑐!!
𝑆 𝐋, 𝜈,𝜎! ∼ Ψ

𝐴!
𝑐!!
, 𝜈 	

(6)	260	

Eq.	(6)	predicts	that	plotting	species	richness	and	effective	area	both	rescaled	by	effective	261	

connectivity	(i.e.,		 !
!!!
	versus	!!

!!!
)	should	cause	the	SARs	for	all	fragmented	landscapes	to	collapse	on	262	

to	one	curve.	We	verified	this	was	true	for	all	our	simulated	data	(Fig.	2b)	despite	the	huge	263	

variability	displayed	by	the	unscaled	SARs	(Fig.	2a).	This	scaling	collapse	verifies	that	we	can	264	

estimate	species	loss	by	calculating	just	two	parameters	from	our	fragmented	landscape	265	

(effective	area	𝐴! 	and	effective	connectivity	𝑐!)	and	plugging	the	numbers	into	our	Eq.	(5).	Doing	266	

so	produced	noteworthy	errors	only	for	a	small	number	of	special	cases	corresponding	to	267	

clustered	landscapes	with	extremely	low	effective	connectivity	due	to	the	presence	of	highly	268	

isolated	habitat	‘islands’.	On	such	landscapes,	the	simulated	long-term	richness	was	relatively	269	

high	because	of	endemism	on	the	‘islands’,	but	the	scaling	used	to	produce	Eq.	(5)	cannot	account	270	

for	such	endemics	and	thus	underestimates	species	richness	(see	Appendix	3).		271	
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Extinction debt 272	

We	applied	our	new	analytical	methods	to	the	problem	of	estimating	extinction	debt	in	273	

fragmented	landscapes.	The	upper	and	lower	bounds	on	species	richness	immediately	after	274	

habitat	loss,	for	given	values	of	the	fragmentation-independent	parameters	(𝐴!,	𝐴!"#	and	𝜎),	are	275	

given	by	formulas	in	Chisholm	et	al.	(2018).	Our	new	results	provide	the	corresponding	estimates	276	

of	long-term	loss.	We	calculated	upper	and	lower	bounds	on	𝜎! 	for	each	𝐴!!"	from	the	minimum	277	

and	maximum	values	across	all	the	real	and	synthetic	landscapes;	this	in	turn	gives	bounds	on	278	

effective	connectivity	𝑐!	and	ultimately	on	𝑆	(via	Eq.	(4)),	representing	the	best-	and	worst-case	279	

scenarios	for	long-term	species	richness	on	fragmented	landscapes	(Appendix	4).	Corresponding	280	

estimates	of	extinction	debt	are	given	in	absolute	terms	as	𝑆 − 𝑆	or	in	relative	terms	as	 𝑆 − 𝑆 /281	

𝑆!,	where	𝑆!	is	the	species	richness	of	the	original	landscape.		282	

Across	a	range	of	spatial	scales	(𝐴!"#),	levels	of	habitat	cover	(
!!

!!"#
)	and	intrinsic	dispersal	283	

parameters	(𝜎),	immediate	species	loss	was	consistently	substantial,	but	usually	represented	less	284	

than	50%	of	species	richness	(Fig.	3).	By	contrast,	when	extinction	debt	was	accounted	for,	total	285	

long-term	losses	were	usually	over	50%	and	in	many	cases	close	to	100%.	The	qualitative	286	

relationship	of	immediate	and	long-term	loss	to	spatial	scale	was	consistent	across	parameter	287	

sets	(Appendix	4):	extinction	debt	(in	relative	terms)	was	generally	maximal	at	intermediate	scales	288	

but	remained	sensitive	to	the	spatial	structure	of	each	habitat.		289	

Among	the	suite	of	landscapes	in	our	testbed,	the	real	landscapes	from	satellite	data	are	most	290	

relevant	for	empirical	problems.	Our	simulation-based	estimates	of	long-term	species	loss	on	291	

these	real	landscapes	fell	within	the	theoretical	bounds	from	our	formulas,	as	expected,	but	292	
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exhibited	a	much	narrower	range	of	values	than	those	from	our	synthetic	landscapes.	For	small	293	

real	landscapes,	the	percentage	long-term	species	loss	was	approximately	equal	to	the	294	

percentage	of	habitat	loss	(Fig.	4).	At	intermediate	spatial	scales	the	percentage	long-term	species	295	

loss	was	greatest:	for	example,	for	the	parameter	values	in	Fig.	4,	long-term	species	loss	on	real	296	

landscapes	was	90–95%	at	intermediate	spatial	scales	when	80%	of	habitat	was	lost.	At	very	large	297	

scales,	we	found	that	the	structure	of	real	landscapes	tended	to	impede	dispersal,	leading	to	low	298	

𝑐! 	values	and	long-term	species	richness	values	close	to	the	theoretical	lower	bound	(Fig.	4).		299	

In	an	example	application	of	our	methods,	estimating	tree	species	losses	in	the	Amazon	(Fig.	6)	300	

the	predicted	species	richness	was	consistently	closer	to	the	theoretical	lower	bound.	Overall,	the	301	

percentage	of	species	remaining	as	a	function	of	spatial	scale	follows	a	U-shaped	curve	on	real	302	

landscapes	(Fig.	4),	and	accordingly	the	total	percentage	of	species	lost	(extinction	debt	and	303	

immediate	loss	together)	follows	a	hump-shaped	curve.	In	Fig.	5,	we	summarize	graphically	the	304	

expected	percentage	of	species	remaining	for	a	range	of	levels	of	habitat	loss	and	connectivity	305	

and	across	a	range	of	spatial	scales.	306	

We	found	that	the	most	connected	scenario	in	our	model,	and	the	best-case	scenario	for	long-307	

term	species	richness	(lowest	species	loss),	is	when	habitat	loss	is	random.	We	can	quantify	this	308	

best-case	scenario	by	taking	the	long-term	species	richness	from	a	randomly	fragmented	309	

landscape	divided	by	the	original	species	richness	in	a	contiguous	landscape:		310	

𝑆!"#$%& 𝐴!"# ,𝐴! , 𝜈,𝜎!

𝑆!"#$%&(𝐴!"# , 𝜈,𝜎!)
=

𝐴!
𝐴!"#

𝜎!𝛹 𝐴!"#
𝜎! , 𝜈

𝜎!𝛹(𝐴!"#𝜎! , 𝜈)
=

𝐴!
𝐴!"#

	

(6)	311	
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Therefore,	the	best-case	proportion	of	species	remaining	in	the	long-term	after	habitat	loss	is	312	

equal	to	the	proportion	of	habitat	remaining	ℎ = !!
!!"#

	(Fig.	6).	This	result	also	generalizes	to	the	313	

case	where	the	landscape	consists	of	multiple	habitat	types	each	providing	an	independent	niche	314	

for	species	to	occupy,	assuming	that	within	each	niche	species	dynamics	are	neutral	(Appendix	6).	315	

Even	this	best-case	long-term	scenario	is	substantially	worse	than	immediate	loss	scenarios,	316	

where	the	number	of	species	initially	remaining	is	always	higher	than	 !!
!!"#

	(Fig.	6b).	The	317	

importance	of	accurately	accounting	for	extinction	debt	is	underscored	by	a	comparison	with	the	318	

traditional	power-law	SAR	approach,	which	in	a	scenario	of	20%	habitat	remaining	predicts	the	319	

62–85%	of	species	remaining	(Appendix	1),	a	substantial	overestimate	compared	to	our	results	320	

(Fig.	6a).	 	321	
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Discussion 322	

Habitat	loss	is	a	ubiquitous	feature	of	modern	landscapes,	yet	we	still	lack	a	fundamental	323	

understanding	of	how	it	affects	biodiversity	both	in	the	short-term	and	in	the	long-term	after	324	

repayment	of	extinction	debt.		The	effects	of	fragmentation	on	biodiversity	in	particular	are	hotly	325	

debated	(Fahrig	2017;	Fletcher	et	al.	2018)	fueled	partly,	in	our	view,	by	lack	of	clarity	around	326	

how	to	quantify	fragmentation.	The	true	response	of	biodiversity	to	fragmentation	likely	varies	327	

across	spatial	and	temporal	scales	and	is	affected	by	properties	of	both	species	and	landscapes	328	

(Lindenmayer	et	al.	2000,	2015;	Evans	et	al.	2017).	Here	we	have	focused	on	the	knowledge	gap	329	

surrounding	habitat	loss,	habitat	fragmentation	and	extinction	debt	by	developing	new	analytical	330	

treatments	of	a	spatially	explicit	neutral	model	(Eq.	(5)).	Below	we	focus	first	on	our	technical	331	

results	and	then	on	the	implications	for	the	fragmentation	debate	more	broadly.	332	

Our	neutral	models	account	for	fragmentation	through	new	parameters,	which	measure	333	

landscapes	through	the	lens	of	the	taxa	being	studied.	In	particular,	effective	area	𝐴! 	and	334	

effective	connectivity	𝑐!	quantify	concepts	that	have	long	been	central	to	thinking	in	335	

conservation.	Our	effective	area	parameter	is	the	number	of	individual	organisms	remaining	in	336	

the	fragmented	landscape	and	thus	incorporates	habitat	quality	and	individual	density	for	the	337	

taxa	of	interest.	Our	effective	connectivity	parameter	integrates	further	aspects	of	habitat	338	

structure	and	dispersal	mechanisms	into	a	single	value	capturing	broad	restrictions	to	movement	339	

in	the	landscape	for	the	taxa	of	interest.	The	broader	lesson	here	is	that	any	biologically	340	

meaningful	metric	of	fragmentation	must	take	a	species-eye	view	of	the	world,	rather	than	being	341	

based	on	human	perceptions	of	what	“fragmented”	looks	like.	342	
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What	degree	of	species	loss	can	be	expected	in	the	long	term	in	a	neutral	model?	Even	in	our	343	

best-case	scenario,	long-term	species	loss	is	substantial	(Fig.	3),	with	the	same	proportion	of	344	

species	lost	as	the	proportion	of	habitat	lost.	Worryingly,	all	our	examples	based	on	real	345	

fragmentation	maps	(Fig.	4,	Fig.	6)	are	even	more	severe	and	closer	to	the	worst-case	scenario.	346	

This	suggests	that	realistic	landscape	patterns	exhibit	considerable	structural	impediments	to	347	

connectivity.	In	the	real	world,	where	competitive	exclusion	and	environmental	stochasticity	348	

accelerate	change	beyond	the	pace	of	a	neutral	model	(Kalyuzhny	et	al.	2015;	Danino	et	al.	2016),	349	

and	where	dispersal	across	the	matrix	may	increase	mortality,	the	loss	of	diversity	could	be	350	

greater	still.	351	

One	prediction	of	our	model	is	that	the	best-case	scenario	for	long-term	species	richness,	under	a	352	

fixed	total	area	of	habitat	loss,	is	a	randomly	cleared	landscape	corresponding	to	the	highest	353	

connectivity	between	habitat	cells.	This	prediction	should	be	interpreted	cautiously	because	our	354	

model	ignores	edge	effects	(see	Appendix	5),	which	constitute	a	complex	variety	of	ecological	355	

responses,	with	some	positive	but	mostly	negative	effects	on	diversity.	Along	edges,	sensitive	356	

species	can	be	driven	to	extinction	by	processes	including	altered	microclimate	or	increased	357	

accessibility	to	poachers	(Ewers	&	Didham	2006;	Evans	et	al.	2017).	These	extinctions	can	also	be	358	

masked	along	edges	by	increased	local	habitat	diversity.	Our	model	could	be	extended	to	include	359	

edge	effects	by	appropriately	adjusting	effective	area	to	penalize	edges.		360	

Our	analysis	has	exposed	one	general	obstacle	to	a	rigorous	conceptual	foundation	of	“extinction	361	

debt”.	A	practical	definition	of	extinction	debt	in	conservation	biology	would	be	based	on	a	362	

timescale	that	is	long	enough	for	a	new	equilibrium	to	be	reached	after	fragmentation,	but	short	363	

enough	that	no	significant	speciation	occurs.	But	when	the	ecological	and	evolutionary	timescales	364	
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overlap	(e.g.,	in	Fig.	1,	which	indicates	roughly	50,000	yr),	it	becomes	impossible	to	satisfy	both	of	365	

these	requirements	simultaneously,	because	there	is	no	true	equilibrium	on	the	ecological	366	

timescale.	This	suggests	that	defining	extinction	debt	means	specifying	a	timescale	of	interest,	367	

and	that	this	choice	will	inevitably	be	somewhat	arbitrary:	the	timescale	must	be	long	enough	for	368	

most	extinctions	to	occur,	but	short	enough	that	speciation	is	still	largely	irrelevant.	369	

Moving	beyond	the	purview	of	conservation	biology,	we	see	that	on	very	long	(geological)	time	370	

scales,	fragmentation	can	actually	increase	diversity	by	promoting	speciation	(Fig.	1).	It	may	seem	371	

paradoxical	that	anthropogenic	habitat	fragmentation	is	generally	thought	to	be	bad	for	372	

biodiversity	whilst	geological	habitat	fragmentation	is	perceived	to	increase	diversity	due	to	373	

speciation	and	the	origin	of	endemics	in	isolated	habitat	patches	such	as	the	islands	on	374	

archipelagos.	The	phenomenon	is	of	great	interest	in	biogeography:	repeated	bouts	of	375	

fragmentation	and	speciation	over	geological	time	is	one	hypothesis	proposed	to	explain	the	high	376	

diversity	and	endemism	of	ecosystems	ranging	from	the	Amazon	to	the	South	African	fynbos	377	

(Allsopp	et	al.	2014).	It	is	pleasing	that	a	single	unified	model	provides	explanations	for	why	378	

fragmentation	can	destroy	biodiversity	on	short	term	time	scales,	yet	sometimes	foster	379	

biodiversity	on	geological	timescale	(see	Appendix	4).	Also,	these	results	highlight	the	conundrum	380	

that	reconnecting	historically	fragmented	landscapes	can	have	a	negative	impact	on	biodiversity,	381	

a	topic	that	we	leave	for	future	work.	382	

Returning	to	the	ongoing	fragmentation	debate	(Fahrig	2017,	2019;	Fletcher	et	al.	2018;	Fahrig	et	383	

al.	2019;	Miller-Rushing	et	al.	2019),	we	ascribe	the	current	impasse	partly	to	differences	in	the	384	

unstated	assumptions	made	by	the	opposing	sides,	which	in	turn	is	due	to	a	reliance	on	mainly	on	385	

verbal	arguments	inspired	by	intuition	and	limited	empirical	evidence.	If	even	in	a	neutral	model,	386	
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the	answer	to	the	fragmentation	question	is	non-trivial	and	context-dependent,	surely	it	must	be	387	

so	in	reality	as	well.	Therefore,	we	encourage	participants	in	the	fragmentation	debate	to	take	388	

pains	to	make	explicit	their	assumptions	about	spatial	scales,	temporal	scales,	taxonomic	scope,	389	

and	the	definition	of	fragmentation	itself.	More	quantitative	mechanistic	modelling	could	help	in	390	

this	regard.	391	

Beyond	these	general	recommendations,	we	highlight	three	key	messages	for	the	fragmentation	392	

debate.	First,	the	response	of	species	to	fragmentation	depends	not	just	on	the	arrangement	and	393	

amount	of	habitat	loss,	but	on	ecological	properties	of	the	species	themselves,	including	dispersal	394	

ability.	Second,	the	long-term	species	loss	following	habitat	loss	can	be	drastically	different	to	the	395	

immediate	species	loss.	Finally,	quantifying	fragmentation	in	a	mechanistic	way	–	here	using	our	396	

effective	connectivity	and	effective	area	metrics	–	is	critical	to	properly	understanding	its	impact.		397	

We	have	presented	a	new	analysis	of	a	mechanistic	model	that	allows	us	to	hone	our	intuitions	398	

for	how	the	process	of	fragmentation	and	habitat	loss	affects	diversity	over	different	spatial	and	399	

temporal	scales.	In	characterizing	the	response	of	biodiversity	to	fragmentation,	we	show	that	400	

doing	so	accurately	requires	an	appropriate	metric	of	fragmentation	that	specifically	considers	401	

species’	responses	to	fragmentation	(effective	connectivity).	We	hope	that	this	will	be	used	as	the	402	

foundation	for	more	sophisticated	models	forecasting	diversity	loss.	403	
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Figure legends 541	

Fig.	1	Three	habitat	loss	scenarios	(a–c)	and	species	richness	over	time	averaged	across	10	542	

simulations	(d–f).	The	solid	and	dashed	curves	represent	the	result	with	and	without	speciation,	543	

respectively;	over	a	1000	generation	timeframe	the	ability	for	speciation	to	offset	extinction	debt	544	

is	negligible	(as	indeed	one	would	expect	in	most	real	situations).	The	colored	areas	on	the	right	545	

represent	the	equilibrium	outcome	of	species	richness	within	the	respective	scenario,	with	546	

uncertainty	obtained	from	repeated	simulations	indicated	by	paler	red	or	blue.	For	comparison,	547	

an	SAR	approach	for	species	richness	estimation	that	ignores	extinction	debt	and	fragmentation	548	

would	predict	a	species	richness	of	1020–1400	(𝑧	between	0.1	and	0.3)	in	all	three	scenarios	549	

(Appendix	1).	For	all	simulations	we	used	parameters 𝐴!"# = 500!,	ℎ = 20%,	𝜈 = 0.0001,	550	

𝜎 = 16.	551	

Fig.	2	The	unscaled	(a)	and	rescaled	(b)	SARs	from	our	simulations	(obtained	by	dividing	the	552	

effective	area	axis	and	the	species	richness	axis,	by	the	squared	effective	connectivity,	𝑐!!).	The	re-553	

scaling	collapses	the	parameter	space	to	its	equivalent	in	a	contiguous	landscape,	and	the	554	

resulting	points	fall	approximately	on	a	single	curve.	MPEs	are	4.91%	(contiguous),	9.09%	555	

(clustered),	4.17%	(random)	and	8.08%	(real).	Parameters	used	were	all	combinations	of	𝜎	in	556	

{8, 16, 32},	𝐴!"#	in	{50!, 500!, 5000!},	and	ℎ	in	 10, 20, 40 	for	each	landscape	type,	with	557	

𝜈 = 0.0001. 558	

Fig.	3	The	equilibrium	percentage	of	species	richness	remaining	after	habitat	loss,	including	the	559	

uncertainty	range	obtained	from	differences	in	fragmentation,	as	a	function	of	total	area,	𝐴!"#.	560	

Dark	red	indicates	best-case	immediate	loss	after	habitat	loss.	Paler	red	indicates	worst-case	561	
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immediate	loss	and	thus	shows	the	uncertainty	around	immediate	loss	based	on	habitat	562	

configuration.	Dark	blue	areas	show	the	remaining	species	at	equilibrium	in	the	longer	term,	after	563	

extinction	debt	has	been	paid.	Paler	blue	shows	species	that	remain	in	the	longer	term	in	the	564	

best-case	scenario	depending	on	the	habitat	configuration.	Pale	grey	represents	the	definite	565	

extinction	debt	as	the	gap	between	the	worst-case	immediate	loss	and	best-case	long-term	loss	566	

results.	The	actual	values	of	richness	after	immediate	loss	and	in	the	long-term	will	occur	in	the	567	

pale	red	and	pale	blue	pale	colored	areas	respectively,	and	depend	upon	the	structure	of	the	568	

fragmented	landscape	(see	Fig.	4	for	an	example	of	equilibrium	richness	corresponding	to	the	569	

center	panel).	Here,	𝜈 = 0.0001.	570	

Fig.	4	Percentage	of	species	richness	remaining	in	the	long-term	as	a	function	of	total	habitat	571	

area.	Each	point	represents	the	mean	value	of	species	richness	(vertical	axis)	from	simulations	on	572	

one	landscape	of	area	𝐴!"#	(horizontal	axis)	and	effective	connectivity	𝑐! 	(colors).	For	all	points,	573	

habitat	cover	is	ℎ = 20%	and	the	dispersal	parameter	is	𝜎 = 16,	corresponding	to	the	central	574	

panel	from	Fig.	3.	Theoretical	bounds	our	formulas	are	given	by	the	dashed	and	dotted	lines	for	575	

the	upper	and	lower	bounds,	respectively.	The	region	(Appendix	3)	between	these	bounds	576	

corresponds	directly	to	the	pale	blue	region	in	the	central	panel	of	Fig.	3.	Real	landscapes	occupy	577	

a	subset	of	parameter	space,	indicated	by	the	grey	shaded	region.	The	three	triangles	represent	578	

the	results	from	simulations	performed	on	three	landscapes	of	equal	effective	area	(𝐴! = ℎ𝐴!"#)	579	

indicated	on	the	right.	580	

Fig.	5	Summary	of	expected	species	richness	outcomes	at	different	spatiotemporal	scales	and	581	

under	different	levels	of	habitat	loss	and	fragmentation.	This	figure	conveys	the	qualitative	582	

patterns	that	hold	across	parameter	space.	Here,	𝜎 = 16,	𝜈 = 0.0001,	𝐴!"# ∈ 10!, 10!, 10! 	583	
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(for	local,	intermediate	and	regional	spatial	scale,	respectively)	and	ℎ ∈ 0.8, 0.4, 0.2 	(for	low,	584	

medium	and	high	habitat	loss,	respectively).	The	extremes	of	habitat	connectivity	𝑐! 	at	each	585	

spatial	scale	were	determined	using	our	full	range	of	real	landscapes	to	determine	the	lower	586	

bound,	and	using	random	landscapes	to	determine	the	upper	bound.	Warmer	colors	indicate	587	

fewer	species	remaining	(more	severe	species	loss).		588	

Fig.	6	Different	methods	of	estimating	species	richness	in	a	fragmented	landscape.	The	approach	589	

of	Chisholm	et	al.	(2018)	gives	bounds	for	the	species	richness	immediately	following	habitat	loss	590	

(red	area).	Our	approach	gives	bounds	for	the	long-term	species	richness	(blue	area).	The	591	

traditional	power-law	approach	provides	a	phenomenological	estimate	of	species	richness	592	

without	reference	to	temporal	scale	(brown	area).	Predictions	for	tree	species	losses	in	five	10	593	

km2	areas	of	the	Amazon	are	shown	using	the	effective	connectivity	metric	with	𝜎 = 8.5	594	

(approximately	40.2	m)	and	𝜈 = 6×10!!	(Condit	et	al.	2002).	The	approach	for	predicting	the	595	

tree	species	losses	is	outlined	in	Appendix	7.	Abbreviations	for	locations:	Elc,	El	Cayman,	596	

Colombia;	Rio,	Rio	Branco,	Brazil;	Ari,	Ariquemes,	Brazil;	Atl,	Altamira,	Brazil;	Mar,	Maraba,	Brazil.	597	
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Figure	2.	

	

	

	

100

101

102

103

104

103 104 105 106 107

Area (Ae)

Sp
ec

ie
s 

ric
hn

es
s 

(S
)

Unscaled species−area curvea)

100

102

104

106

100 102 104 106 108 1010

Rescaled area (Ae ce
2)

R
es

ca
le

d 
sp

ec
ie

s 
ric

hn
es

s 
(S

c e2 )

Rescaled species−area curveb)

Landscape type
● ●

● ●

Random Clustered

Real Contiguous



	

35	

Figure	3.	
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Figure	4.	
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Figure	5.	
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Figure	6.	

	

	

	

Alt

Ari
Elc

Mar

Rio0

25

50

75

100

0 25 50 75 100
Percentage of habitat remaining

Pe
rc

en
ta

ge
 o

f s
pe

cie
s 

ric
hn

es
s Power−law SAR

(0.1 ≤ z ≤ 0.3)
Our approach
(after immediate loss)
Our approach
(after extinction debt)

Our approach
(after extinction debt;
empirical examples)

Elc Rio Ari Alt Mar


