2,878 research outputs found
Critical neural networks with short and long term plasticity
In recent years self organised critical neuronal models have provided
insights regarding the origin of the experimentally observed avalanching
behaviour of neuronal systems. It has been shown that dynamical synapses, as a
form of short-term plasticity, can cause critical neuronal dynamics. Whereas
long-term plasticity, such as hebbian or activity dependent plasticity, have a
crucial role in shaping the network structure and endowing neural systems with
learning abilities. In this work we provide a model which combines both
plasticity mechanisms, acting on two different time-scales. The measured
avalanche statistics are compatible with experimental results for both the
avalanche size and duration distribution with biologically observed percentages
of inhibitory neurons. The time-series of neuronal activity exhibits temporal
bursts leading to 1/f decay in the power spectrum. The presence of long-term
plasticity gives the system the ability to learn binary rules such as XOR,
providing the foundation of future research on more complicated tasks such as
pattern recognition.Comment: 8 pages, 7 figure
Role of lysozyme inhibitors in the virulence of avian pathogenic Escherichia coli
Lysozymes are key effectors of the animal innate immunity system that kill bacteria by hydrolyzing peptidoglycan, their major cell wall constituent. Recently, specific inhibitors of the three major lysozyme families occuring in the animal kingdom (c-, g- and i-type) have been discovered in Gram-negative bacteria, and it has been proposed that these may help bacteria to evade lysozyme mediated lysis during interaction with an animal host. Escherichia coli produces two inhibitors that are specific for c-type lysozyme (Ivy, Inhibitor of vertebrate lysozyme; MliC, membrane bound lysozyme inhibitor of c-type lysozyme), and one specific for g-type lysozyme (PliG, periplasmic lysozyme inhibitor of g-type lysozyme). Here, we investigated the role of these lysozyme inhibitors in virulence of Avian Pathogenic E. coli (APEC) using a serum resistance test and a subcutaneous chicken infection model. Knock-out of mliC caused a strong reduction in serum resistance and in in vivo virulence that could be fully restored by genetic complementation, whereas ivy and pliG could be knocked out without effect on serum resistance and virulence. This is the first in vivo evidence for the involvement of lysozyme inhibitors in bacterial virulence. Remarkably, the virulence of a ivy mliC double knock-out strain was restored to almost wild-type level, and this strain also had a substantial residual periplasmic lysozyme inhibitory activity that was higher than that of the single knock-out strains. This suggests the existence of an additional periplasmic lysozyme inhibitor in this strain, and indicates a regulatory interaction in the expression of the different inhibitors
Real-time dynamics of the formation of hydrated electrons upon irradiation of water clusters with extreme ultraviolet light
Free electrons in a polar liquid can form a bound state via interaction with the molecular environment. This so-called hydrated electron state in water is of fundamental importance e.g.~in cellular biology or radiation chemistry. Hydrated electrons are highly reactive radicals that can either directly interact with DNA or enzymes, or form highly excited hydrogen (H∗) after being captured by protons. Here, we investigate the formation of the hydrated electron in real-time employing XUV femtosecond pulses from a free electron laser, in this way observing the initial steps of the hydration process. Using time-resolved photoelectron spectroscopy we find formation timescales in the low picosecond range and resolve the prominent dynamics of forming excited hydrogen states
Stability of quantized time-delay nonlinear systems: A Lyapunov-Krasowskii-functional approach
Lyapunov-Krasowskii functionals are used to design quantized control laws for
nonlinear continuous-time systems in the presence of constant delays in the
input. The quantized control law is implemented via hysteresis to prevent
chattering. Under appropriate conditions, our analysis applies to stabilizable
nonlinear systems for any value of the quantization density. The resulting
quantized feedback is parametrized with respect to the quantization density.
Moreover, the maximal allowable delay tolerated by the system is characterized
as a function of the quantization density.Comment: 31 pages, 3 figures, to appear in Mathematics of Control, Signals,
and System
Red fluorescence of the triplefin Tripterygion delaisi is increasingly visible against background light with increasing depth
The light environment in water bodies changes with depth due to the absorption of short and long wavelengths. Below 10 m depth, red wavelengths are almost completely absent rendering any red-reflecting animal dark and achromatic. However, fluorescence may produce red coloration even when red light is not available for reflection. A large number of marine taxa including over 270 fish species are known to produce red fluorescence, yet it is unclear under which natural light environment fluorescence contributes perceptively to their colours. To address this question we: (i) characterized the visual system of Tripterygion delaisi, which possesses fluorescent irides, (ii) separated the colour of the irides into its reflectance and fluorescence components and (iii) combined these data with field measurements of the ambient light environment to calculate depth-dependent perceptual chromatic and achromatic contrasts using visual modelling. We found that triplefins have cones with at least three different spectral sensitivities, including differences between the two members of the double cones, giving them the potential for trichromatic colour vision. We also show that fluorescence contributes increasingly to the radiance of the irides with increasing depth. Our results support the potential functionality of red fluorescence, including communicative roles such as species and sex identity, and non-communicative roles such as camouflage
Cutaneous pathology in primary erythermalgia
Primary or idiopathic erythermalgia is characterized by recurrent, red, warm, and painful lower extremities. It arises at young age and persists throughout life because no treatment is available. We report the cutaneous pathology of affected skin lesions of three patients with primary erythermalgia. Biopsy specimens showed a mild perivascular mononuclear infiltrate, thickened blood vessel basement membranes, abundant perivascular edema, and moderate endothelial swelling. The thickened basal membrane of the blood vessels showed a laminar structure, and abundant perivascular edema and moderate endothelial cell swelling were evident. These histopathologic findings in primary erythermalgia appear to be nonspecific but allow diagnostic differentiation from erythromelalgia in which fibromuscular intimal proliferation and occlusive thrombi in the endarteriolar capillaries are apparent and from erythermalgia secondary to vasculitis. Histopathologic examination of affected skin lesions in patients with red, congested, warm, and painful burning extremities is a valuable tool in the diagnostic process
Development of a quality assurance process for the SoLid experiment
The SoLid experiment has been designed to search for an oscillation pattern induced by a light sterile neutrino state, utilising the BR2 reactor of SCK circle CEN, in Belgium.
The detector leverages a new hybrid technology, utilising two distinct scintillators in a cubic array, creating a highly segmented detector volume. A combination of 5 cm cubic polyvinyltoluene cells, with (LiF)-Li-6:ZnS(Ag) sheets on two faces of each cube, facilitate reconstruction of the neutrino signals. Whilst the high granularity provides a powerful toolset to discriminate backgrounds; by itself the segmentation also represents a challenge in terms of homogeneity and calibration, for a consistent detector response. The search for this light sterile neutrino implies a sensitivity to distortions of around O(10)% in the energy spectrum of reactor (v) over bare. Hence, a very good neutron detection efficiency, light yield and homogeneous detector response are critical for data validation. The minimal requirements for the SoLid physics program are a light yield and a neutron detection efficiency larger than 40 PA/MeV/cube and 50% respectively. In order to guarantee these minimal requirements, the collaboration developed a rigorous quality assurance process for all 12800 cubic cells of the detector. To carry out the quality assurance process, an automated calibration system called CALIPSO was designed and constructed. CALIPSO provides precise, automatic placement of radioactive sources in front of each cube of a given detector plane (16 x 16 cubes). A combination of Na-22, Cf-252 and AmBe gamma and neutron sources were used by CALIPSO during the quality assurance process. Initially, the scanning identified defective components allowing for repair during initial construction of the SoLid detector. Secondly, a full analysis of the calibration data revealed initial estimations for the light yield of over 60 PA/MeV and neutron reconstruction efficiency of 68%, validating the SoLid physics requirements
Red fluorescence of the triplefin Tripterygion delaisi is increasingly visible against background light with increasing depth
- …
