611 research outputs found

    Acquired resistance to anti-PD1 therapy: checkmate to checkpoint blockade?

    Get PDF
    Editorial summary Anti-programmed cell death 1 (PD1) immunotherapies are among the most effective anti-cancer immunotherapies available; however, a large number of patients present with or develop resistance to them. Unfortunately, very little is known regarding the mechanisms of resistance to such therapies. A recent study sought to identify mutations associated with resistance to anti-PD1 therapy. Results from this study demonstrated that mutations which affected the sensitivity of tumor cells to T-cell-derived interferons, and mutations limiting tumor-cell antigen presentation, could cause acquired resistance. These findings have significant implications for understanding the mechanisms by which anti-PD1 therapies exert their efficacy, comprehending why and how some patients acquire resistance over time, and ultimately guiding the development of combination therapies designed to overcome, or potentially prevent, the development of acquired immunotherapeutic resistance

    From mice to humans: Developments in cancer immunoediting

    Get PDF
    Cancer immunoediting explains the dual role by which the immune system can both suppress and/or promote tumor growth. Although cancer immunoediting was first demonstrated using mouse models of cancer, strong evidence that it occurs in human cancers is now accumulating. In particular, the importance of CD8+ T cells in cancer immunoediting has been shown, and more broadly in those tumors with an adaptive immune resistance phenotype. This Review describes the characteristics of the adaptive immune resistance tumor microenvironment and discusses data obtained in mouse and human settings. The role of other immune cells and factors influencing the effector function of tumor-specific CD8+ T cells is covered. We also discuss the temporal occurrence of cancer immunoediting in metastases and whether it differs from immunoediting in the primary tumor of origin

    PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux

    Get PDF
    Cancer therapies will increasingly be utilized in combination to treat advanced malignancies so as to increase their long-term efficacy in a greater proportion of patients. In particular, much attention has focused on developing targeted therapies that inhibit the PI3K-AKT-mTOR signaling network which is dysregulated in many cancer types. In addition, there is now a growing appreciation that targeting of these pathways can impact not only on cancer cells, but also host immunity. The clinical success of cancer immunotherapies targeting T-cell immune checkpoint receptors PD-1/PD-L1 has demonstrated the importance of immunoevasion as a hallmark of cancer. In this review, we discuss how PI3K-AKT-mTOR inhibitors target cancer cell biology, attenuate immune cell effector function and modulate the tumor microenvironment. We next discuss how the immunomodulatory potential of these inhibitors can be exploited through rational combinations with immunotherapies and targeted therapies

    Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √S=7 and 8 TeV in the ATLAS experiment

    Get PDF
    Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H -> gamma gamma, ZZ*, WW*, Z gamma, b (b) over bar, tau tau and mu mu decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 fb(-1) at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18(-0.14)(+0.15). The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered
    corecore