415 research outputs found

    Aqueous outflow imaging techniques and what they tell us about intraocular pressure regulation.

    Get PDF
    Recent advances in the medical and surgical management of open-angle glaucoma have increased the number of treatment options available. Several new intraocular pressure (IOP)-lowering treatments target the conventional aqueous outflow (AO) system. However, success rates are variable and outcomes in individual patients are often difficult to predict. Variable treatment responses remain unexplained and highlight deficiencies in our current understanding of AO regulation and IOP homeostasis. Imaging is often relied upon to confirm diagnoses and monitor treatment responses in other ocular and systemic pathologies. As yet no suitable AO imaging tool has been developed to fulfil this role in glaucoma. A variety of imaging techniques have been used to study the AO tracts of humans and animals in ex vivo and in vivo eyes. In this review, results from novel imaging techniques that assess aqueous drainage through the episcleral venous system are considered and we argue these provide new insights into AO regulation. We suggest that the ability to objectively measure AO responses to interventions would be a significant clinical advance, and we have demonstrated that this can be achieved with direct visualisation of aqueous drainage. We predict that the evolution of AO imaging technology will continue to reveal critical components of AO and IOP regulation, and that personalised IOP-lowering treatment in glaucoma care may well become a reality in the near future.1. A core support grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute 2. Haemoglobin Video Imaging facilities funded by Sydney Eye Hospital Foundation, Carl Zeiss Meditec, and Glaukos Corporatio

    The 'At-risk mental state' for psychosis in adolescents : clinical presentation, transition and remission.

    Get PDF
    Despite increased efforts over the last decade to prospectively identify individuals at ultra-high risk of developing a psychotic illness, limited attention has been specifically directed towards adolescent populations (<18 years). In order to evaluate how those under 18 fulfilling the operationalised criteria for an At-Risk Mental State (ARMS) present and fare over time, we conducted an observational study. Participants (N = 30) generally reported a high degree of functional disability and frequent and distressing perceptual disturbance, mainly in the form of auditory hallucinations. Seventy percent (21/30) were found to fulfil the criteria for a co-morbid ICD-10 listed mental health disorder, with mood (affective; 13/30) disorders being most prevalent. Overall transition rates to psychosis were low at 24 months follow-up (2/28; 7.1 %) whilst many participants demonstrated a significant reduction in psychotic-like symptoms. The generalisation of these findings may be limited due to the small sample size and require replication in a larger sample

    Alkalizing Reactions Streamline Cellular Metabolism in Acidogenic Microorganisms

    Get PDF
    An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms

    AglH, a thermophilic UDP‑<i>N</i>‑acetylglucosamine‑1‑phosphate:dolichyl phosphate GlcNAc‑1‑phosphotransferase initiating protein<i> N</i>‑glycosylation pathway in <i>Sulfolobus acidocaldarius</i>, is capable of complementing the eukaryal Alg7

    Get PDF
    AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D(100)), IV (F(220)) and V (F(264)) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival

    Heterogeneity of variance components for preweaning growth in Romane sheep due to the number of lambs reared

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pre-weaning growth rate of lambs, an important component of meat market production, is affected by maternal and direct genetic effects. The French genetic evaluation model takes into account the number of lambs suckled by applying a multiplicative factor (1 for a lamb reared as a single, 0.7 for twin-reared lambs) to the maternal genetic effect, in addition to including the birth*rearing type combination as a fixed effect, which acts on the mean. However, little evidence has been provided to justify the use of this multiplicative model. The two main objectives of the present study were to determine, by comparing models of analysis, 1) whether pre-weaning growth is the same trait in single- and twin-reared lambs and 2) whether the multiplicative coefficient represents a good approach for taking this possible difference into account.</p> <p>Methods</p> <p>Data on the pre-weaning growth rate, defined as the average daily gain from birth to 45 days of age on 29,612 Romane lambs born between 1987 and 2009 at the experimental farm of La Sapinière (INRA-France) were used to compare eight models that account for the number of lambs per dam reared in various ways. Models were compared using the Akaike information criteria.</p> <p>Results</p> <p>The model that best fitted the data assumed that 1) direct (maternal) effects correspond to the same trait regardless of the number of lambs reared, 2) the permanent environmental effects and variances associated with the dam depend on the number of lambs reared and 3) the residual variance depends on the number of lambs reared. Even though this model fitted the data better than a model that included a multiplicative coefficient, little difference was found between EBV from the different models (the correlation between EBV varied from 0.979 to 0.999).</p> <p>Conclusions</p> <p>Based on experimental data, the current genetic evaluation model can be improved to better take into account the number of lambs reared. Thus, it would be of interest to evaluate this model on field data and update the genetic evaluation model based on the results obtained.</p

    Implementation of Dual-Source RF Excitation in 3 T MR-Scanners Allows for Nearly Identical ADC Values Compared to 1.5 T MR Scanners in the Abdomen

    Get PDF
    Background: To retrospectively and prospectively compare abdominal apparent diffusion coefficient (ADC) values obtained within in a 1.5 T system and 3 T systems with and without dual-source parallel RF excitation techniques. Methodology/Principal Findings: After IRB approval, diffusion-weighted (DW) images of the abdomen were obtained on three different MR systems (1.5 T, a first generation 3 T, and a second generation 3 T which incorporates dual-source parallel RF excitation) on 150 patients retrospectively and 19 volunteers (57 examinations total) prospectively. Seven regions of interest (ROI) were throughout the abdomen were selected to measure the ADC. Statistical analysis included independent two-sided t-tests, Mann-Whitney U tests and correlation analysis. In the DW images of the abdomen, mean ADC values were nearly identical with nonsignificant differences when comparing the 1.5 T and second generation 3 T systems in all seven anatomical regions in the patient population and six of the seven in the volunteer population (p.0.05 in all distributions). The strength of correlation measured in the volunteer population between the two scanners in the kidneys ranged from r = 0.64–0.88 and in the remaining regions (besides the spleen), r.0.85. In the patient population the first generation 3 T scanner had different mean ADC values with significant differences (p,0.05) compared to the other two scanners in each of the seven distributions. In the volunteer population, the kidneys shared similar ADC mean values in comparison to the other two scanners with nonsignificant differences

    Regional Brain Differences in Cortical Thickness, Surface Area and Subcortical Volume in Individuals with Williams Syndrome

    Get PDF
    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex patterns of cortical differences using both surface area and thickness. In addition, correlation results implicate specific brain regions in levels of anxiety in WS, consistent with previous reports investigating general anxiety disorders in the general population

    Search for lepton-flavor violation at HERA

    Get PDF
    A search for lepton-flavor-violating interactions epμXe p \to \mu X and epτXe p\to \tau X has been performed with the ZEUS detector using the entire HERA I data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data were taken at center-of-mass energies, s\sqrt{s}, of 300 and 318 GeV. No evidence of lepton-flavor violation was found, and constraints were derived on leptoquarks (LQs) that could mediate such interactions. For LQ masses below s\sqrt{s}, limits were set on λeq1βq\lambda_{eq_1} \sqrt{\beta_{\ell q}}, where λeq1\lambda_{eq_1} is the coupling of the LQ to an electron and a first-generation quark q1q_1, and βq\beta_{\ell q} is the branching ratio of the LQ to the final-state lepton \ell (μ\mu or τ\tau) and a quark qq. For LQ masses much larger than s\sqrt{s}, limits were set on the four-fermion interaction term λeqαλqβ/MLQ2\lambda_{e q_\alpha} \lambda_{\ell q_\beta} / M_{\mathrm{LQ}}^2 for LQs that couple to an electron and a quark qαq_\alpha and to a lepton \ell and a quark qβq_\beta, where α\alpha and β\beta are quark generation indices. Some of the limits are also applicable to lepton-flavor-violating processes mediated by squarks in RR-Parity-violating supersymmetric models. In some cases, especially when a higher-generation quark is involved and for the process epτXe p\to \tau X , the ZEUS limits are the most stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig. 6) adde

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
    corecore